Finding regions of interest on toroidal meshes

Kesheng Wu, R. Sinha, Chad Jones, S. Ethier, S. Klasky, K. Ma, A. Shoshani, M. Winslett
{"title":"Finding regions of interest on toroidal meshes","authors":"Kesheng Wu, R. Sinha, Chad Jones, S. Ethier, S. Klasky, K. Ma, A. Shoshani, M. Winslett","doi":"10.1088/1749-4699/4/1/015003","DOIUrl":null,"url":null,"abstract":"Fusion promises to provide clean and safe energy, and a considerable amount of research effort is underway to turn this aspiration intoreality. This work focuses on a building block for analyzing data produced from the simulation of microturbulence in magnetic confinementfusion devices: the task of efficiently extracting regions of interest. Like many other simulations where a large amount of data are produced,the careful study of ``interesting'' parts of the data is critical to gain understanding. In this paper, we present an efficient approach forfinding these regions of interest. Our approach takes full advantage of the underlying mesh structure in magnetic coordinates to produce acompact representation of the mesh points inside the regions and an efficient connected component labeling algorithm for constructingregions from points. This approach scales linearly with the surface area of the regions of interest instead of the volume as shown with bothcomputational complexity analysis and experimental measurements. Furthermore, this new approach is 100s of times faster than a recentlypublished method based on Cartesian coordinates.","PeriodicalId":89345,"journal":{"name":"Computational science & discovery","volume":"4 1","pages":"015003"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1749-4699/4/1/015003","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational science & discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1749-4699/4/1/015003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Fusion promises to provide clean and safe energy, and a considerable amount of research effort is underway to turn this aspiration intoreality. This work focuses on a building block for analyzing data produced from the simulation of microturbulence in magnetic confinementfusion devices: the task of efficiently extracting regions of interest. Like many other simulations where a large amount of data are produced,the careful study of ``interesting'' parts of the data is critical to gain understanding. In this paper, we present an efficient approach forfinding these regions of interest. Our approach takes full advantage of the underlying mesh structure in magnetic coordinates to produce acompact representation of the mesh points inside the regions and an efficient connected component labeling algorithm for constructingregions from points. This approach scales linearly with the surface area of the regions of interest instead of the volume as shown with bothcomputational complexity analysis and experimental measurements. Furthermore, this new approach is 100s of times faster than a recentlypublished method based on Cartesian coordinates.
在环形网格上寻找感兴趣的区域
核聚变有望提供清洁和安全的能源,为了将这一愿望变为现实,大量的研究工作正在进行中。这项工作的重点是分析磁约束聚变装置中微湍流模拟产生的数据的构建块:有效提取感兴趣区域的任务。像许多其他产生大量数据的模拟一样,仔细研究数据中“有趣”的部分对于获得理解至关重要。在本文中,我们提出了一种有效的方法来寻找这些感兴趣的区域。我们的方法充分利用了磁坐标下的底层网格结构来生成区域内网格点的紧凑表示,并使用有效的连接分量标记算法来从点构建区域。这种方法与感兴趣区域的表面积成线性关系,而不是与计算复杂度分析和实验测量结果显示的体积成线性关系。此外,这种新方法比最近发表的基于笛卡尔坐标的方法快100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信