Virtual materials design using databases of calculated materials properties

Ture R. Munter, D. D. Landis, F. Abild-Pedersen, Glenn Jones, Shengguang Wang, T. Bligaard
{"title":"Virtual materials design using databases of calculated materials properties","authors":"Ture R. Munter, D. D. Landis, F. Abild-Pedersen, Glenn Jones, Shengguang Wang, T. Bligaard","doi":"10.1088/1749-4699/2/1/015006","DOIUrl":null,"url":null,"abstract":"Materials design is most commonly carried out by experimental trial and error techniques. Current trends indicate that the increased complexity of newly developed materials, the exponential growth of the available computational power, and the constantly improving algorithms for solving the electronic structure problem, will continue to increase the relative importance of computational methods in the design of new materials. One possibility for utilizing electronic structure theory in the design of new materials is to create large databases of materials properties, and subsequently screen these for new potential candidates satisfying given design criteria. We utilize a database of more than 81 000 electronic structure calculations. This alloy database is combined with other published materials properties to form the foundation of a virtual materials design framework (VMDF). The VMDF offers a flexible collection of materials databases, filters, analysis tools and visualization methods, which are particularly useful in the design of new functional materials and surface structures. The applicability of the VMDF is illustrated by two examples. One is the determination of the Pareto-optimal set of binary alloy methanation catalysts with respect to catalytic activity and alloy stability; the other is the search for new alloy mercury absorbers.","PeriodicalId":89345,"journal":{"name":"Computational science & discovery","volume":"2 1","pages":"015006"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1749-4699/2/1/015006","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational science & discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1749-4699/2/1/015006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Materials design is most commonly carried out by experimental trial and error techniques. Current trends indicate that the increased complexity of newly developed materials, the exponential growth of the available computational power, and the constantly improving algorithms for solving the electronic structure problem, will continue to increase the relative importance of computational methods in the design of new materials. One possibility for utilizing electronic structure theory in the design of new materials is to create large databases of materials properties, and subsequently screen these for new potential candidates satisfying given design criteria. We utilize a database of more than 81 000 electronic structure calculations. This alloy database is combined with other published materials properties to form the foundation of a virtual materials design framework (VMDF). The VMDF offers a flexible collection of materials databases, filters, analysis tools and visualization methods, which are particularly useful in the design of new functional materials and surface structures. The applicability of the VMDF is illustrated by two examples. One is the determination of the Pareto-optimal set of binary alloy methanation catalysts with respect to catalytic activity and alloy stability; the other is the search for new alloy mercury absorbers.
虚拟材料设计使用数据库计算材料的性质
材料设计通常是通过实验试错技术进行的。目前的趋势表明,新开发材料的复杂性增加,可用计算能力的指数增长,以及解决电子结构问题的不断改进的算法,将继续增加计算方法在新材料设计中的相对重要性。在新材料设计中利用电子结构理论的一种可能性是创建材料特性的大型数据库,并随后筛选满足给定设计标准的新的潜在候选材料。我们利用超过81000个电子结构计算的数据库。该合金数据库与其他已发布的材料属性相结合,形成虚拟材料设计框架(VMDF)的基础。VMDF提供了一个灵活的材料数据库、过滤器、分析工具和可视化方法集合,这在设计新的功能材料和表面结构时特别有用。通过两个实例说明了VMDF的适用性。一是确定二元合金甲烷化催化剂在催化活性和合金稳定性方面的pareto最优组合;另一个是寻找新的合金汞吸收剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信