Characterizing the inverses of block tridiagonal, block Toeplitz matrices

Nicholas M. Boffi, Judith C. Hill, M. Reuter
{"title":"Characterizing the inverses of block tridiagonal, block Toeplitz matrices","authors":"Nicholas M. Boffi, Judith C. Hill, M. Reuter","doi":"10.1088/1749-4680/8/1/015001","DOIUrl":null,"url":null,"abstract":"We consider the inversion of block tridiagonal, block Toeplitz matrices and comment on the behaviour of these inverses as one moves away from the diagonal. Using matrix Mobius transformations, we first present an representation (with respect to the number of block rows and block columns) for the inverse matrix and subsequently use this representation to characterize the inverse matrix. There are four symmetry-distinct cases where the blocks of the inverse matrix (i) decay to zero on both sides of the diagonal, (ii) oscillate on both sides, (iii) decay on one side and oscillate on the other and (iv) decay on one side and grow on the other. This characterization exposes the necessary conditions for the inverse matrix to be numerically banded and may also aid in the design of preconditioners and fast algorithms. Finally, we present numerical examples of these matrix types.","PeriodicalId":89345,"journal":{"name":"Computational science & discovery","volume":"8 1","pages":"015001"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1749-4680/8/1/015001","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational science & discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1749-4680/8/1/015001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We consider the inversion of block tridiagonal, block Toeplitz matrices and comment on the behaviour of these inverses as one moves away from the diagonal. Using matrix Mobius transformations, we first present an representation (with respect to the number of block rows and block columns) for the inverse matrix and subsequently use this representation to characterize the inverse matrix. There are four symmetry-distinct cases where the blocks of the inverse matrix (i) decay to zero on both sides of the diagonal, (ii) oscillate on both sides, (iii) decay on one side and oscillate on the other and (iv) decay on one side and grow on the other. This characterization exposes the necessary conditions for the inverse matrix to be numerically banded and may also aid in the design of preconditioners and fast algorithms. Finally, we present numerical examples of these matrix types.
表征块三对角线,块Toeplitz矩阵的逆
我们考虑了块三对角线矩阵、块Toeplitz矩阵的逆,并评论了这些逆在远离对角线时的行为。使用矩阵莫比乌斯变换,我们首先给出逆矩阵的表示(关于块行和块列的数量),然后使用这种表示来表征逆矩阵。有四种对称不同的情况,其中逆矩阵的块(i)在对角线两侧衰减为零,(ii)在两侧振荡,(iii)在一侧衰减并在另一侧振荡,(iv)在一侧衰减并在另一侧生长。这一特性揭示了逆矩阵被数值带状化的必要条件,也有助于设计预处理和快速算法。最后,我们给出了这些矩阵类型的数值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信