A multi-scale geometric flow method for molecular structure reconstruction

Guoliang Xu, Ming Li, C. Chen
{"title":"A multi-scale geometric flow method for molecular structure reconstruction","authors":"Guoliang Xu, Ming Li, C. Chen","doi":"10.1088/1749-4680/8/1/014002","DOIUrl":null,"url":null,"abstract":"We have previously reported an L 2 -gradient flow (L2GF) method for cryoelectron tomography and single-particle reconstruction, which has a reasonably good performance. The aim of this paper is to further upgrade both the computational efficiency and accuracy of the L2GF method. In a finite-dimensional space spanned by the radial basis functions, a minimization problem combining a fourth-order geometric flow with an energy decreasing constraint is solved by a bi-gradient method. The bi-gradient method involves a free parameter β ∈ [0, 1]. As β increases from 0 to 1, the structures of the reconstructed function from coarse to fine are captured. The experimental results show that the proposed method yields more desirable results.","PeriodicalId":89345,"journal":{"name":"Computational science & discovery","volume":"8 1","pages":"014002"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1749-4680/8/1/014002","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational science & discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1749-4680/8/1/014002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We have previously reported an L 2 -gradient flow (L2GF) method for cryoelectron tomography and single-particle reconstruction, which has a reasonably good performance. The aim of this paper is to further upgrade both the computational efficiency and accuracy of the L2GF method. In a finite-dimensional space spanned by the radial basis functions, a minimization problem combining a fourth-order geometric flow with an energy decreasing constraint is solved by a bi-gradient method. The bi-gradient method involves a free parameter β ∈ [0, 1]. As β increases from 0 to 1, the structures of the reconstructed function from coarse to fine are captured. The experimental results show that the proposed method yields more desirable results.
分子结构重建的多尺度几何流方法
我们之前报道了一种l2梯度流(L2GF)方法用于低温电子断层扫描和单粒子重建,该方法具有相当好的性能。本文的目的是进一步提高L2GF方法的计算效率和精度。在由径向基函数张成的有限维空间中,用双梯度法求解了带能量递减约束的四阶几何流的最小化问题。双梯度法涉及一个自由参数β∈[0,1]。当β从0增加到1时,重构函数的结构由粗到细被捕获。实验结果表明,该方法能得到较理想的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信