Elliptic stable envelopes

IF 3.5 1区 数学 Q1 MATHEMATICS
Mina Aganagic, A. Okounkov
{"title":"Elliptic stable envelopes","authors":"Mina Aganagic, A. Okounkov","doi":"10.1090/jams/954","DOIUrl":null,"url":null,"abstract":"We construct stable envelopes in equivariant elliptic cohomology of Nakajima quiver varieties. In particular, this gives an elliptic generalization of the results of Maulik and Okounkov [Astérisque 408 (2019), ix+209]. We apply them to the computation of the monodromy of \n\n \n q\n q\n \n\n-difference equations arising in the enumerative K-theory of rational curves in Nakajima varieties, including the quantum Knizhnik–Zamolodchikov equations.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/954","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 118

Abstract

We construct stable envelopes in equivariant elliptic cohomology of Nakajima quiver varieties. In particular, this gives an elliptic generalization of the results of Maulik and Okounkov [Astérisque 408 (2019), ix+209]. We apply them to the computation of the monodromy of q q -difference equations arising in the enumerative K-theory of rational curves in Nakajima varieties, including the quantum Knizhnik–Zamolodchikov equations.
椭圆稳定包络
本文构造了中岛颤群的等变椭圆上同调中的稳定包络。特别是,这给出了Maulik和Okounkov [ast risque 408 (2019), ix+209]的结果的椭圆概括。我们将它们应用于计算在Nakajima变型的有理曲线的枚举k理论中产生的q q差分方程的单态,包括量子Knizhnik-Zamolodchikov方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信