{"title":"Small subalgebras of polynomial rings and Stillman’s Conjecture","authors":"Tigran Ananyan, M. Hochster","doi":"10.1090/JAMS/932","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n comma d comma eta\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>η<!-- η --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n, d, \\eta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be positive integers. We show that in a polynomial ring <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> variables over an algebraically closed field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of arbitrary characteristic, any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-subalgebra of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> generated over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> by at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> forms of degree at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is contained in a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-subalgebra of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> generated by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B less-than-or-equal-to Superscript eta Baseline script upper B left-parenthesis n comma d right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>B</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n\n </mml:mrow>\n <mml:mi>η<!-- η --></mml:mi>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">B \\leq {}^\\eta \\mathcal {B}(n,d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> forms <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G 1 comma ellipsis comma upper G Subscript upper B Baseline\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>G</mml:mi>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mo>…<!-- … --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"thinmathspace\" />\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>G</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>B</mml:mi>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{G}_1,\\,\\ldots ,\\,{G}_{B}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"less-than-or-equal-to d\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>d</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\leq d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript eta Baseline script upper B left-parenthesis n comma d right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n\n </mml:mrow>\n <mml:mi>η<!-- η --></mml:mi>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{}^\\eta \\mathcal {B}(n,d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> does not depend on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, such that these forms are a regular sequence and such that for any ideal <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper J\">\n <mml:semantics>\n <mml:mi>J</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">J</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> generated by forms that are in the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-span of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G 1 comma ellipsis comma upper G Subscript upper B Baseline\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>G</mml:mi>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mo>…<!-- … --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"thinmathspace\" />\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>G</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>B</mml:mi>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{G}_1,\\,\\ldots ,\\,{G}_{B}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the ring <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R slash upper J\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>R</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>J</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">R/J</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfies the Serre condition <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper R Subscript eta\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">R</mml:mi>\n </mml:mrow>\n <mml:mi>η<!-- η --></mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {R}_\\eta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. These results imply a conjecture of M. Stillman asserting that the projective dimension of an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-generator ideal <inline-formula ","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2016-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/932","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/932","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 66
Abstract
Let n,d,ηn, d, \eta be positive integers. We show that in a polynomial ring RR in NN variables over an algebraically closed field KK of arbitrary characteristic, any KK-subalgebra of RR generated over KK by at most nn forms of degree at most dd is contained in a KK-subalgebra of RR generated by B≤ηB(n,d)B \leq {}^\eta \mathcal {B}(n,d) forms G1,…,GB{G}_1,\,\ldots ,\,{G}_{B} of degree ≤d\leq d, where ηB(n,d){}^\eta \mathcal {B}(n,d) does not depend on NN or KK, such that these forms are a regular sequence and such that for any ideal JJ generated by forms that are in the KK-span of G1,…,GB{G}_1,\,\ldots ,\,{G}_{B}, the ring R/JR/J satisfies the Serre condition Rη\mathrm {R}_\eta. These results imply a conjecture of M. Stillman asserting that the projective dimension of an nn-generator ideal
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.