Diagonal cycles and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-functions

IF 3.5 1区 数学 Q1 MATHEMATICS
H. Darmon, V. Rotger
{"title":"Diagonal cycles and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-functions","authors":"H. Darmon, V. Rotger","doi":"10.1090/JAMS/861","DOIUrl":null,"url":null,"abstract":"This article establishes new cases of the Birch and Swinnerton-Dyer conjecture in analytic rank 0, for elliptic curves over $ \\mathbb{Q}$ viewed over the fields cut out by certain self-dual Artin representations of dimension at most $ 4$. When the associated $ L$-function vanishes (to even order $ \\ge 2$) at its central point, two canonical classes in the corresponding Selmer group are constructed and shown to be linearly independent assuming the non-vanishing of a Garrett-Hida $ p$-adic $ L$-function at a point lying outside its range of classical interpolation. The key tool for both results is the study of certain $ p$-adic families of global Galois cohomology classes arising from Gross-Kudla-Schoen diagonal cycles in a tower of triple products of modular curves.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"30 1","pages":"601-672"},"PeriodicalIF":3.5000,"publicationDate":"2016-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/861","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/861","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 61

Abstract

This article establishes new cases of the Birch and Swinnerton-Dyer conjecture in analytic rank 0, for elliptic curves over $ \mathbb{Q}$ viewed over the fields cut out by certain self-dual Artin representations of dimension at most $ 4$. When the associated $ L$-function vanishes (to even order $ \ge 2$) at its central point, two canonical classes in the corresponding Selmer group are constructed and shown to be linearly independent assuming the non-vanishing of a Garrett-Hida $ p$-adic $ L$-function at a point lying outside its range of classical interpolation. The key tool for both results is the study of certain $ p$-adic families of global Galois cohomology classes arising from Gross-Kudla-Schoen diagonal cycles in a tower of triple products of modular curves.
对角环和欧拉系统II: Hasse-Weil-Artin l-函数的Birch和Swinnerton-Dyer猜想
本文建立了在解析秩为0的$ \mathbb{Q}$上的椭圆曲线的Birch猜想和Swinnerton-Dyer猜想的新情况,这些椭圆曲线是在维数不超过$ 4$的某些自对偶Artin表示切割的域上观察的。当相关的$ L$-函数在其中心点消失(偶阶$ $ 2$)时,在相应的Selmer群中构造两个正则类,并证明它们是线性无关的,假设Garrett-Hida $ p$-adic $ L$-函数在其经典插值范围之外的点上不消失。这两个结果的关键工具是研究由模曲线的三重积塔中的Gross-Kudla-Schoen对角环产生的全局伽罗维上同类的某些$ p$进族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信