Opto-acoustic phenomena in whispering gallery mode resonators

IF 6.7 3区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
G. Lin, Y. Chembo
{"title":"Opto-acoustic phenomena in whispering gallery mode resonators","authors":"G. Lin, Y. Chembo","doi":"10.1080/15599612.2015.1124476","DOIUrl":null,"url":null,"abstract":"ABSTRACT Optical whispering gallery mode resonators are important platforms to enhance and study various nonlinear frequency conversion processes. Stimulated Brillouin scattering is one of the strongest nonlinear effects, and can be successfully investigated using these platforms. In this article, we study the phenomenon of stimulated Brillouin scattering using a crystalline disk resonator. A fast scanning ringdown spectroscopy technique is used to characterize the optical modes featuring quality factors of the order of one billion at telecom wavelengths. The mW scale threshold power in a centimeter disk resonator is observed and found to be strongly dependent on the gap between the resonator and the prism coupler.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"10 1","pages":"32 - 39"},"PeriodicalIF":6.7000,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2015.1124476","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2015.1124476","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 14

Abstract

ABSTRACT Optical whispering gallery mode resonators are important platforms to enhance and study various nonlinear frequency conversion processes. Stimulated Brillouin scattering is one of the strongest nonlinear effects, and can be successfully investigated using these platforms. In this article, we study the phenomenon of stimulated Brillouin scattering using a crystalline disk resonator. A fast scanning ringdown spectroscopy technique is used to characterize the optical modes featuring quality factors of the order of one billion at telecom wavelengths. The mW scale threshold power in a centimeter disk resonator is observed and found to be strongly dependent on the gap between the resonator and the prism coupler.
窃窃廊模式谐振器中的光声现象
光学窃窃廊谐振器是增强和研究各种非线性变频过程的重要平台。受激布里渊散射是最强烈的非线性效应之一,利用这些平台可以成功地进行研究。本文利用晶盘谐振器研究了受激布里渊散射现象。采用快速扫描衰荡光谱技术对电信波长下质量因子为10亿数量级的光学模式进行了表征。观察了厘米盘式谐振器的毫瓦尺度阈值功率,发现它与谐振器与棱镜耦合器之间的间隙密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Optomechatronics
International Journal of Optomechatronics 工程技术-工程:电子与电气
CiteScore
9.30
自引率
0.00%
发文量
3
审稿时长
3 months
期刊介绍: International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics. Topics you can submit include, but are not limited to: -Adaptive optics- Optomechanics- Machine vision, tracking and control- Image-based micro-/nano- manipulation- Control engineering for optomechatronics- Optical metrology- Optical sensors and light-based actuators- Optomechatronics for astronomy and space applications- Optical-based inspection and fault diagnosis- Micro-/nano- optomechanical systems (MOEMS)- Optofluidics- Optical assembly and packaging- Optical and vision-based manufacturing, processes, monitoring, and control- Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信