{"title":"Liquid-crystal micro-photonics","authors":"I. Muševič","doi":"10.1080/21680396.2016.1157768","DOIUrl":null,"url":null,"abstract":"ABSTRACT This review presents the main results that were achieved over the past decade in the new field of liquid-crystal micro-photonics. After a general introduction to some aspects of state-of-the-art micro-photonics technologies, nematic colloids are discussed in terms of their self-assembly and photonic properties. Liquid-crystal lasers, based on spatially periodic, liquid-crystal phases, are reviewed, and microlasers based on liquid-crystal microdroplets are presented and discussed. We show that optical microfibres can be self-grown in water/liquid-crystal dispersions and present their waveguiding and lasing properties. The review concludes with a discussion of the resonant transfer of light across different liquid-crystal micro-objects and presents the ultra-fast optical Kerr and STED effects in bulk nematic liquid crystals.","PeriodicalId":18087,"journal":{"name":"Liquid Crystals Reviews","volume":"4 1","pages":"1 - 34"},"PeriodicalIF":4.8000,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21680396.2016.1157768","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid Crystals Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21680396.2016.1157768","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 45
Abstract
ABSTRACT This review presents the main results that were achieved over the past decade in the new field of liquid-crystal micro-photonics. After a general introduction to some aspects of state-of-the-art micro-photonics technologies, nematic colloids are discussed in terms of their self-assembly and photonic properties. Liquid-crystal lasers, based on spatially periodic, liquid-crystal phases, are reviewed, and microlasers based on liquid-crystal microdroplets are presented and discussed. We show that optical microfibres can be self-grown in water/liquid-crystal dispersions and present their waveguiding and lasing properties. The review concludes with a discussion of the resonant transfer of light across different liquid-crystal micro-objects and presents the ultra-fast optical Kerr and STED effects in bulk nematic liquid crystals.
期刊介绍:
Liquid Crystals Reviews publishes review articles on all aspects of liquid crystal fundamentals and applied science, including experimental and theoretical studies of physical and chemical properties, molecular design and synthesis and engineering of liquid crystal devices. The Journal fosters cross-disciplinary exchange of ideas, encouraging authors to present material at a level accessible to specialists from other fields of science and engineering. Liquid Crystals Reviews provides the scientific community, in both academia and industry, with a publication of standing, guaranteed by the Editors and by the International Editorial Board who are active scientists in the worldwide liquid crystal community.