Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales

IF 4.8 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
A. Sengupta, S. Herminghaus, C. Bahr
{"title":"Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales","authors":"A. Sengupta, S. Herminghaus, C. Bahr","doi":"10.1080/21680396.2014.963716","DOIUrl":null,"url":null,"abstract":"The hydrodynamic properties of nematic liquid crystals are characterized by a complex mutual coupling between flow, viscosity, and nematic order. While the flow behaviour of nematic bulk samples is well known, corresponding studies in microfluidic settings are still at an early stage. The presence of the four confining channel walls – and in particular the nature of the surface anchoring of the nematic order on the walls – adds new phenomena to the already rich and multifaceted flow behaviour. We present an overview of recent studies focusing on the microfluidics of nematic liquid crystals. Particular topics are the functionalization of the channel walls for defined surface anchoring conditions and the resulting structures of the nematic director field, the controlling and tuning of the flow velocity profile and director field configuration and resulting opto-fluidic applications, and the behaviour of topological defects in the flowing nematic and their application for a guided colloidal transport.","PeriodicalId":18087,"journal":{"name":"Liquid Crystals Reviews","volume":"2 1","pages":"110 - 73"},"PeriodicalIF":4.8000,"publicationDate":"2014-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21680396.2014.963716","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid Crystals Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21680396.2014.963716","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 88

Abstract

The hydrodynamic properties of nematic liquid crystals are characterized by a complex mutual coupling between flow, viscosity, and nematic order. While the flow behaviour of nematic bulk samples is well known, corresponding studies in microfluidic settings are still at an early stage. The presence of the four confining channel walls – and in particular the nature of the surface anchoring of the nematic order on the walls – adds new phenomena to the already rich and multifaceted flow behaviour. We present an overview of recent studies focusing on the microfluidics of nematic liquid crystals. Particular topics are the functionalization of the channel walls for defined surface anchoring conditions and the resulting structures of the nematic director field, the controlling and tuning of the flow velocity profile and director field configuration and resulting opto-fluidic applications, and the behaviour of topological defects in the flowing nematic and their application for a guided colloidal transport.
液晶微流体:微观尺度下的表面、弹性和粘性相互作用
向列型液晶的流体动力特性是由流动、粘度和向列序之间复杂的相互耦合所决定的。虽然向列体样品的流动行为是众所周知的,但在微流体环境下的相应研究仍处于早期阶段。四个封闭通道壁的存在-特别是在墙壁上的向列顺序的表面锚定的性质-为已经丰富和多方面的流动行为增加了新的现象。本文综述了向列型液晶微流控的最新研究进展。特定的主题是通道壁的功能化,以确定表面锚定条件和由此产生的向列导向场结构,流速分布和导向场配置的控制和调整以及由此产生的光流体应用,以及流动向列中拓扑缺陷的行为及其在引导胶体传输中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Liquid Crystals Reviews
Liquid Crystals Reviews CHEMISTRY, PHYSICALCRYSTALLOGRAPHY&n-CRYSTALLOGRAPHY
CiteScore
7.60
自引率
5.90%
发文量
8
期刊介绍: Liquid Crystals Reviews publishes review articles on all aspects of liquid crystal fundamentals and applied science, including experimental and theoretical studies of physical and chemical properties, molecular design and synthesis and engineering of liquid crystal devices. The Journal fosters cross-disciplinary exchange of ideas, encouraging authors to present material at a level accessible to specialists from other fields of science and engineering. Liquid Crystals Reviews provides the scientific community, in both academia and industry, with a publication of standing, guaranteed by the Editors and by the International Editorial Board who are active scientists in the worldwide liquid crystal community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信