{"title":"Liquid crystal polymer networks: switchable surface topographies","authors":"Danqing Liu, D. Broer","doi":"10.1080/21680396.2013.766410","DOIUrl":null,"url":null,"abstract":"Coating of liquid crystal (LC) networks modified with azobenzene moieties as crosslinks was reviewed to create surface topographies in the micrometer range by exposure with UV light. Various configurations were worked out. Homogeneous cholesteric networks and homeotropic nematic networks could form well-defined protrusions by local exposure. The protrusions can be dynamic, i.e. disappear as soon as light is switched off, or be permanent keeping stable topological structures even after the exposure stops. The formation of the protrusions was proven to be induced mainly by a decrease in density when the order in the LC network is reduced under the trans to–cis isomerization of the azobenzene units. Next to the photochemical effect also heating by absorption played a role. When the polymer network coating was build up from alternating cholesteric and homeotropic areas a uniform exposure led to the surface topography. When exposed, the cholesteric areas are protruding and the homeotropic areas are indenting. In this the deformation is enhanced by the orchestrated linear geometric shear deformations in the neighboring areas where the homeotropic areas tend to expand in the lateral direction and the cholesteric areas in the direction perpendicular to the coating.","PeriodicalId":18087,"journal":{"name":"Liquid Crystals Reviews","volume":"1 1","pages":"20 - 28"},"PeriodicalIF":4.8000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21680396.2013.766410","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid Crystals Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21680396.2013.766410","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 44
Abstract
Coating of liquid crystal (LC) networks modified with azobenzene moieties as crosslinks was reviewed to create surface topographies in the micrometer range by exposure with UV light. Various configurations were worked out. Homogeneous cholesteric networks and homeotropic nematic networks could form well-defined protrusions by local exposure. The protrusions can be dynamic, i.e. disappear as soon as light is switched off, or be permanent keeping stable topological structures even after the exposure stops. The formation of the protrusions was proven to be induced mainly by a decrease in density when the order in the LC network is reduced under the trans to–cis isomerization of the azobenzene units. Next to the photochemical effect also heating by absorption played a role. When the polymer network coating was build up from alternating cholesteric and homeotropic areas a uniform exposure led to the surface topography. When exposed, the cholesteric areas are protruding and the homeotropic areas are indenting. In this the deformation is enhanced by the orchestrated linear geometric shear deformations in the neighboring areas where the homeotropic areas tend to expand in the lateral direction and the cholesteric areas in the direction perpendicular to the coating.
期刊介绍:
Liquid Crystals Reviews publishes review articles on all aspects of liquid crystal fundamentals and applied science, including experimental and theoretical studies of physical and chemical properties, molecular design and synthesis and engineering of liquid crystal devices. The Journal fosters cross-disciplinary exchange of ideas, encouraging authors to present material at a level accessible to specialists from other fields of science and engineering. Liquid Crystals Reviews provides the scientific community, in both academia and industry, with a publication of standing, guaranteed by the Editors and by the International Editorial Board who are active scientists in the worldwide liquid crystal community.