{"title":"Hofer-Like Geometry and Flux Theory","authors":"S. Tchuiaga","doi":"10.1080/1726037X.2021.2011110","DOIUrl":null,"url":null,"abstract":"Abstract This paper meticulously revisit and study the flux geometry of any compact connected oriented manifold (M, Ω). We generalize several well- known factorization results, exhibit some orbital conditions under which flux geometry can be studied, give a proof of the discreteness of the flux group for volume-preserving diffeomorphisms, derive that any smooth isotopy in the group of all vanishing-flux volume-preserving diffeomorphisms is a vanishing- flux path, and show that the kernel of flux for volume-preserving diffeomorphisms is C 1−closed inside the group of all volume-preserving diffeomorphisms isotopic to the identity map: We recover several well-known results from symplectic geometry. We use the above studies to construct a right-invariant metric on the group of all volume-preserving diffeomorphisms isotopic to the identity map and study the induced geometry. In the case of a symplectic volume form, the restriction of our metric to the group Ham(N, ω), of all Hamiltonian diffeomorphisms of a closed symplectic manifold (N, ω), is controlled from above by the usual Hofer metric in general, while the Hofer-like metric control our metric in the case where the Riemannian structure is compatible with the symplectic structure (in particular, our construction implies the non-degeneracy of the Hofer and Hofer-like norms).","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"19 1","pages":"227 - 270"},"PeriodicalIF":0.4000,"publicationDate":"2016-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2021.2011110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract This paper meticulously revisit and study the flux geometry of any compact connected oriented manifold (M, Ω). We generalize several well- known factorization results, exhibit some orbital conditions under which flux geometry can be studied, give a proof of the discreteness of the flux group for volume-preserving diffeomorphisms, derive that any smooth isotopy in the group of all vanishing-flux volume-preserving diffeomorphisms is a vanishing- flux path, and show that the kernel of flux for volume-preserving diffeomorphisms is C 1−closed inside the group of all volume-preserving diffeomorphisms isotopic to the identity map: We recover several well-known results from symplectic geometry. We use the above studies to construct a right-invariant metric on the group of all volume-preserving diffeomorphisms isotopic to the identity map and study the induced geometry. In the case of a symplectic volume form, the restriction of our metric to the group Ham(N, ω), of all Hamiltonian diffeomorphisms of a closed symplectic manifold (N, ω), is controlled from above by the usual Hofer metric in general, while the Hofer-like metric control our metric in the case where the Riemannian structure is compatible with the symplectic structure (in particular, our construction implies the non-degeneracy of the Hofer and Hofer-like norms).