Differential geometric structure of non-equilibrium dynamics in competition and predation: Finsler geometry and KCC theory

IF 0.4 Q4 MATHEMATICS
K. Yamasaki, T. Yajima
{"title":"Differential geometric structure of non-equilibrium dynamics in competition and predation: Finsler geometry and KCC theory","authors":"K. Yamasaki, T. Yajima","doi":"10.1080/1726037X.2016.1250500","DOIUrl":null,"url":null,"abstract":"Abstract We considered the differential geometric structure of non-equilibrium dynamics in non-linear interactions, such as competition and predation, based on Kosambi-Cartan-Chern (KCC) theory. The stability of a geodesic flow on a Finslerian manifold is characterized by the deviation curvature (the second invariant in the dynamical system). According to KCC theory, the value of the deviation curvature is constant around the equilibrium point. However, in the non-equilibrium region, not only the value but also the sign of the deviation curvature depend on time. Next, we reapplied KCC theory to the dynamics of the deviation curvature and determined the hierarchical structure of the geometric stability. The dynamics of the deviation curvature in the nonequilibrium region is accompanied by a complex periodic (node) pattern in the predation (competition) system.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"14 1","pages":"137 - 153"},"PeriodicalIF":0.4000,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2016.1250500","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2016.1250500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Abstract We considered the differential geometric structure of non-equilibrium dynamics in non-linear interactions, such as competition and predation, based on Kosambi-Cartan-Chern (KCC) theory. The stability of a geodesic flow on a Finslerian manifold is characterized by the deviation curvature (the second invariant in the dynamical system). According to KCC theory, the value of the deviation curvature is constant around the equilibrium point. However, in the non-equilibrium region, not only the value but also the sign of the deviation curvature depend on time. Next, we reapplied KCC theory to the dynamics of the deviation curvature and determined the hierarchical structure of the geometric stability. The dynamics of the deviation curvature in the nonequilibrium region is accompanied by a complex periodic (node) pattern in the predation (competition) system.
竞争和捕食中非平衡动态的微分几何结构:Finsler几何和KCC理论
摘要基于KCC (kosambii - cartan - chern)理论,研究了竞争和捕食等非线性相互作用中非平衡动力学的微分几何结构。芬斯勒流形上测地线流的稳定性用偏差曲率(动力系统中的第二个不变量)来表征。根据KCC理论,偏离曲率的值在平衡点附近是恒定的。然而,在非平衡区域,不仅偏差曲率的值与时间有关,偏差曲率的符号也与时间有关。其次,将KCC理论重新应用于偏差曲率动力学,确定了几何稳定性的层次结构。在捕食(竞争)系统中,非平衡区域的偏差曲率动力学伴随着复杂的周期(节点)模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信