Some curvature properties of Lorentzian α-Sasakian manifolds

IF 0.4 Q4 MATHEMATICS
S. Dey, A. Bhattacharyya
{"title":"Some curvature properties of Lorentzian α-Sasakian manifolds","authors":"S. Dey, A. Bhattacharyya","doi":"10.1080/1726037X.2016.1177936","DOIUrl":null,"url":null,"abstract":"Abstract The object of the present paper is to study the pseudo-projective φ-recurrent and generalized projective recurrent Lorentzian α-Sasakian manifolds. Here we show that pseudo-projective φ-recurrent Lorentzian α-Sasakian Manifold is an Einstein manifold and in the case of generalized projective φ- recurrent Lorentzian α-Sasakian manifold, we find a relation between the associated 1-forms A and B. We have also proved that the characteristic vector field ξ and vector field ρ associated to the 1-forms A and B are co-directional. We also study quasi-projectively flat Lorentzian α-Sasakian manifolds.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"14 1","pages":"85 - 98"},"PeriodicalIF":0.4000,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2016.1177936","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2016.1177936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The object of the present paper is to study the pseudo-projective φ-recurrent and generalized projective recurrent Lorentzian α-Sasakian manifolds. Here we show that pseudo-projective φ-recurrent Lorentzian α-Sasakian Manifold is an Einstein manifold and in the case of generalized projective φ- recurrent Lorentzian α-Sasakian manifold, we find a relation between the associated 1-forms A and B. We have also proved that the characteristic vector field ξ and vector field ρ associated to the 1-forms A and B are co-directional. We also study quasi-projectively flat Lorentzian α-Sasakian manifolds.
Lorentzian α-Sasakian流形的一些曲率性质
摘要本文的目的是研究伪射影φ-递推和广义射影递推洛伦兹α- sasaki流形。本文证明了伪投影φ-循环洛伦兹α-Sasakian流形是爱因斯坦流形,在广义投影φ-循环洛伦兹α-Sasakian流形的情况下,我们发现了相关的1-形式a和B之间的关系。我们还证明了与1-形式a和B相关的特征向量场ξ和向量场ρ是共向的。我们还研究了拟射影平坦Lorentzian α-Sasakian流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信