Quaternionic osculating curves in Euclidean and semi-Euclidean space

IF 0.4 Q4 MATHEMATICS
Ö. Bektaş, Nurten (Bayrak) Gürses, S. Yüce
{"title":"Quaternionic osculating curves in Euclidean and semi-Euclidean space","authors":"Ö. Bektaş, Nurten (Bayrak) Gürses, S. Yüce","doi":"10.1080/1726037X.2016.1177935","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the osculating curves in Euclidean space E3 and E4, well known in differential geometry, are studied through the instrumentality of quaternions. We inoculate sundry delineations for quaternionic osculating curves in the Euclidean space E3, then we portray the quaternionic osculating curve in E4 as a quaternionic curve whose position vector every time reclines in the orthogonal complement N½ (or N⅓) of its first binormal vector field N2 (or N3), where {T,N1,N2,N3} be the Frenet instrumentations of the quaternionic curve in the Euclidean space E4. We feature quaternionic osculating curves from the point of view their curvature functions K, k and (r — K) and serve the necessary and the sufficient conditions for arbitrary quaternionic curve in E4 to be a quaternionic osculating. Moreover, we gain an explicit equation of a quaternionic osculating curve in E4. In the last two section, we described quaternionic osculating curves in the semi-Euclidean space and some theorems are testified.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"14 1","pages":"65 - 84"},"PeriodicalIF":0.4000,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2016.1177935","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2016.1177935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract In this study, the osculating curves in Euclidean space E3 and E4, well known in differential geometry, are studied through the instrumentality of quaternions. We inoculate sundry delineations for quaternionic osculating curves in the Euclidean space E3, then we portray the quaternionic osculating curve in E4 as a quaternionic curve whose position vector every time reclines in the orthogonal complement N½ (or N⅓) of its first binormal vector field N2 (or N3), where {T,N1,N2,N3} be the Frenet instrumentations of the quaternionic curve in the Euclidean space E4. We feature quaternionic osculating curves from the point of view their curvature functions K, k and (r — K) and serve the necessary and the sufficient conditions for arbitrary quaternionic curve in E4 to be a quaternionic osculating. Moreover, we gain an explicit equation of a quaternionic osculating curve in E4. In the last two section, we described quaternionic osculating curves in the semi-Euclidean space and some theorems are testified.
欧几里得和半欧几里得空间中的四元数密切曲线
摘要本文利用四元数的工具,研究了微分几何中常见的欧几里得空间E3和E4中的密切曲线。在欧几里得空间E3中对四元数密切曲线进行了各种圈定,然后将E4中的四元数密切曲线描述为其位置向量每次在其第一个二法向量场N2(或N3)的正交补N1 / 2(或N1 / 3)中倾斜的四元数曲线,其中{T,N1,N2,N3}是四元数曲线在欧几里得空间E4中的法内仪器。我们从四元数的曲率函数K、K和(r - K)的角度刻画了四元数的密切关系曲线,并提供了E4中任意四元数曲线为四元数密切关系的充分必要条件。此外,我们还得到了E4中四元数密切曲线的显式方程。在前两节中,我们描述了半欧几里得空间中的四元数密切曲线,并证明了一些定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信