Sentiment classification technology based on Markov logic networks

IF 1.4 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hui He, Zhigang Li, Chongchong Yao, Weizhe Zhang
{"title":"Sentiment classification technology based on Markov logic networks","authors":"Hui He, Zhigang Li, Chongchong Yao, Weizhe Zhang","doi":"10.1080/13614568.2016.1152317","DOIUrl":null,"url":null,"abstract":"ABSTRACT With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.","PeriodicalId":54386,"journal":{"name":"New Review of Hypermedia and Multimedia","volume":"22 1","pages":"243 - 256"},"PeriodicalIF":1.4000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13614568.2016.1152317","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Review of Hypermedia and Multimedia","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/13614568.2016.1152317","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9

Abstract

ABSTRACT With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.
基于马尔可夫逻辑网络的情感分类技术
随着网络媒体的多样化,情感分类问题日益受到关注。目前,文本情感分类主要采用监督式机器学习方法,具有一定的领域依赖性。在马尔可夫逻辑网络的基础上,提出了一种基于迁移学习的跨领域多任务文本情感分类方法。通过多对一知识转移,标记文本情感分类,成功地将知识转移到其他领域,提高了文本倾向领域情感分类分析的精度。实验结果表明:(1)基于MLN的学习计划模型比单个学习计划模型具有更高的学习精度。(2)基于马尔可夫逻辑网络的多任务迁移学习比自域学习能获得更多的知识。跨域文本情感分类模型可以显著提高文本情感分类的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Review of Hypermedia and Multimedia
New Review of Hypermedia and Multimedia COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.40
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The New Review of Hypermedia and Multimedia (NRHM) is an interdisciplinary journal providing a focus for research covering practical and theoretical developments in hypermedia, hypertext, and interactive multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信