Ramesha H. Jayaramaiah, Eleonora Egidi, Catriona A. Macdonald, Jun-Tao Wang, Thomas C. Jeffries, Mallavarapu Megharaj, Brajesh K. Singh
{"title":"Soil initial bacterial diversity and nutrient availability determine the rate of xenobiotic biodegradation","authors":"Ramesha H. Jayaramaiah, Eleonora Egidi, Catriona A. Macdonald, Jun-Tao Wang, Thomas C. Jeffries, Mallavarapu Megharaj, Brajesh K. Singh","doi":"10.1111/1751-7915.13946","DOIUrl":null,"url":null,"abstract":"<p>Understanding the relative importance of soil microbial diversity, plants and nutrient management is crucial to implement an effective bioremediation approach to xenobiotics-contaminated soils. To date, knowledge on the interactive effects of soil microbiome, plant and nutrient supply on influencing biodegradation potential of soils remains limited. In this study, we evaluated the individual and interactive effects of soil initial bacterial diversity, nutrient amendments (organic and inorganic) and plant presence on the biodegradation rate of pyrene, a polycyclic aromatic hydrocarbon. Initial bacterial diversity had a strong positive impact on soil biodegradation potential, with soil harbouring higher bacterial diversity showing ~ 2 times higher degradation rates than soils with lower bacterial diversity. Both organic and inorganic nutrient amendments consistently improved the degradation rate in lower diversity soils and had negative (inorganic) to neutral (organic) effect in higher diversity soils. Interestingly, plant presence/type did not show any significant effect on the degradation rate in most of the treatments. Structural equation modelling demonstrated that initial bacterial diversity had a prominent role in driving pyrene biodegradation rates. We provide novel evidence that suggests that soil initial microbial diversity, and nutrient amendments should be explicitly considered in the design and employment of bioremediation management strategies for restoring natural habitats disturbed by organic pollutants.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"15 1","pages":"318-336"},"PeriodicalIF":4.8000,"publicationDate":"2021-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sfamjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.13946","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13946","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Understanding the relative importance of soil microbial diversity, plants and nutrient management is crucial to implement an effective bioremediation approach to xenobiotics-contaminated soils. To date, knowledge on the interactive effects of soil microbiome, plant and nutrient supply on influencing biodegradation potential of soils remains limited. In this study, we evaluated the individual and interactive effects of soil initial bacterial diversity, nutrient amendments (organic and inorganic) and plant presence on the biodegradation rate of pyrene, a polycyclic aromatic hydrocarbon. Initial bacterial diversity had a strong positive impact on soil biodegradation potential, with soil harbouring higher bacterial diversity showing ~ 2 times higher degradation rates than soils with lower bacterial diversity. Both organic and inorganic nutrient amendments consistently improved the degradation rate in lower diversity soils and had negative (inorganic) to neutral (organic) effect in higher diversity soils. Interestingly, plant presence/type did not show any significant effect on the degradation rate in most of the treatments. Structural equation modelling demonstrated that initial bacterial diversity had a prominent role in driving pyrene biodegradation rates. We provide novel evidence that suggests that soil initial microbial diversity, and nutrient amendments should be explicitly considered in the design and employment of bioremediation management strategies for restoring natural habitats disturbed by organic pollutants.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes