{"title":"How does adding anatomical landmarks as fiducial points in the point-matching registration of neuronavigation influence registration accuracy?","authors":"Manning Wang, Zhijian Song","doi":"10.1080/24699322.2016.1180429","DOIUrl":null,"url":null,"abstract":"Abstract Skin markers (SMs) are usually used as fiducial points in registration of neuronavigation, but the areas in which they can be adhered to are restricted, which usually results in poor distribution of the SMs and a large registration error. In this research, we studied whether the registration accuracy can be improved by adding anatomical landmarks (ALs), which are thought to have a larger localization error than SMs. A series of random SM configurations were generated, and for each SM configuration, we generated a corresponding SM-AL configuration by adding several ALs. We then compared the accuracy of the point-matching registration of the SM configurations with that of the corresponding SM-AL configurations. Experiment results indicated that adding ALs always made the mean target registration error of the whole head fall into a lower and narrower range, which meant that the registration became more accurate and more stable. In addition, adding more ALs resulted in a better performance.","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"21 1","pages":"39 - 45"},"PeriodicalIF":1.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24699322.2016.1180429","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2016.1180429","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract Skin markers (SMs) are usually used as fiducial points in registration of neuronavigation, but the areas in which they can be adhered to are restricted, which usually results in poor distribution of the SMs and a large registration error. In this research, we studied whether the registration accuracy can be improved by adding anatomical landmarks (ALs), which are thought to have a larger localization error than SMs. A series of random SM configurations were generated, and for each SM configuration, we generated a corresponding SM-AL configuration by adding several ALs. We then compared the accuracy of the point-matching registration of the SM configurations with that of the corresponding SM-AL configurations. Experiment results indicated that adding ALs always made the mean target registration error of the whole head fall into a lower and narrower range, which meant that the registration became more accurate and more stable. In addition, adding more ALs resulted in a better performance.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.