The multifunctional process of resonance scattering and generation of oscillations by nonlinear layered structures

L. Angermann, V. Yatsyk
{"title":"The multifunctional process of resonance scattering and generation of oscillations by nonlinear layered structures","authors":"L. Angermann, V. Yatsyk","doi":"10.1080/23311940.2016.1158342","DOIUrl":null,"url":null,"abstract":"Abstract The paper focuses on the development of a mathematical model, an effective algorithm and a self-consistent numerical analysis of the multifunctional properties of resonant scattering and generation of oscillations by nonlinear, cubically polarizable layered structures. The multifunctionality of such layered media is caused by the nonlinear mechanism between interacting oscillations—the incident oscillations (exciting the nonlinear layer from the upper and lower half-spaces) as well as the scattered and generated oscillations at the frequencies of excitation/scattering and generation. The study of the resonance properties of scattering and generation of oscillations by a nonlinear structure with a controllable permittivity in dependence on the variation of the intensities of the components of the exciting wave package is of particular interest. In the present paper, we extend our former results, and furthermore we analyze the realizability of multifunctional properties of nonlinear electromagnetic objects with a controllable permittivity. The results of our investigations (i) demonstrate the possibility to control the scattering and generation properties of the nonlinear structure via the intensity of the incident field, (ii) indicate the possibility of increasing the multifunctionality of electronic devices, of designing frequency multipliers, and other electrodynamic devices containing nonlinear dielectrics with controllable permittivity.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2016.1158342","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2016.1158342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract The paper focuses on the development of a mathematical model, an effective algorithm and a self-consistent numerical analysis of the multifunctional properties of resonant scattering and generation of oscillations by nonlinear, cubically polarizable layered structures. The multifunctionality of such layered media is caused by the nonlinear mechanism between interacting oscillations—the incident oscillations (exciting the nonlinear layer from the upper and lower half-spaces) as well as the scattered and generated oscillations at the frequencies of excitation/scattering and generation. The study of the resonance properties of scattering and generation of oscillations by a nonlinear structure with a controllable permittivity in dependence on the variation of the intensities of the components of the exciting wave package is of particular interest. In the present paper, we extend our former results, and furthermore we analyze the realizability of multifunctional properties of nonlinear electromagnetic objects with a controllable permittivity. The results of our investigations (i) demonstrate the possibility to control the scattering and generation properties of the nonlinear structure via the intensity of the incident field, (ii) indicate the possibility of increasing the multifunctionality of electronic devices, of designing frequency multipliers, and other electrodynamic devices containing nonlinear dielectrics with controllable permittivity.
非线性层状结构共振散射和振荡产生的多功能过程
摘要:本文建立了非线性三次极化层状结构共振散射和振荡产生的数学模型、有效算法和自洽数值分析。这种层状介质的多功能性是由相互作用的振荡-入射振荡(从上半空间和下半空间激励非线性层)以及激发/散射和产生频率下的散射和产生振荡之间的非线性机制引起的。具有可控制介电常数的非线性结构的散射和振荡产生的共振特性的研究与激励波包的分量强度的变化有关。在本文中,我们推广了以前的结果,并进一步分析了具有可控介电常数的非线性电磁物体的多功能特性的可实现性。我们的研究结果(i)证明了通过入射场的强度来控制非线性结构的散射和产生特性的可能性,(ii)表明了增加电子器件的多功能性,设计频率乘法器和其他包含具有可控介电常数的非线性电介质的电动力器件的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cogent Physics
Cogent Physics PHYSICS, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信