Perturbation approximation for higher modes in nearly regular two-dimensional cavities

N. Korneev
{"title":"Perturbation approximation for higher modes in nearly regular two-dimensional cavities","authors":"N. Korneev","doi":"10.1080/23311940.2016.1262725","DOIUrl":null,"url":null,"abstract":"A perturbation theory for weakly distorted regular cavity which has classical ray trajectories lying on invariant tori, is constructed to a higher perturbation order, than for the general case. This is possible because of a special structure of semi-classical eigenvalues for integrable Hamiltonians. The perturbation magnitude here has an order of a characteristic wavelength of a mode instead of usual wavelength square. The results are expressed in solutions of the Hill equation. The set includes modes localized along stable periodic ray trajectories; scar modes, corresponding to unstable periodic trajectories; weakly distorted modes of regular cavity, and intermediate cases. The application of the method to square, circular and elliptical cavities is outlined.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2016.1262725","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2016.1262725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A perturbation theory for weakly distorted regular cavity which has classical ray trajectories lying on invariant tori, is constructed to a higher perturbation order, than for the general case. This is possible because of a special structure of semi-classical eigenvalues for integrable Hamiltonians. The perturbation magnitude here has an order of a characteristic wavelength of a mode instead of usual wavelength square. The results are expressed in solutions of the Hill equation. The set includes modes localized along stable periodic ray trajectories; scar modes, corresponding to unstable periodic trajectories; weakly distorted modes of regular cavity, and intermediate cases. The application of the method to square, circular and elliptical cavities is outlined.
近规则二维腔中高模态的微扰近似
构造了具有经典射线轨迹在不变环面上的弱畸变正则腔的微扰理论,其微扰阶比一般情况下高。这是可能的,因为可积哈密顿算子的半经典特征值的特殊结构。这里的微扰量级是模的特征波长的一个阶,而不是通常的波长平方。结果用希尔方程的解表示。该集合包括沿稳定周期射线轨迹的定域模式;疤痕模式,对应于不稳定的周期轨迹;规则空腔弱畸变模态及中间情况。概述了该方法在方形、圆形和椭圆形空腔中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cogent Physics
Cogent Physics PHYSICS, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信