Speciation of binary complexes of Co(II), Ni(II), and Cu(II) with L-phenylalanine in anionic micellar medium

Q3 Chemical Engineering
V. Kumari, M. Ramanaiah, B. Sailaja
{"title":"Speciation of binary complexes of Co(II), Ni(II), and Cu(II) with L-phenylalanine in anionic micellar medium","authors":"V. Kumari, M. Ramanaiah, B. Sailaja","doi":"10.1080/09542299.2015.1087159","DOIUrl":null,"url":null,"abstract":"Abstract Speciation of binary complexes of Co(II), Ni(II), and Cu(II) with L-phenylalanine (Phe) in the presence of water–anionic surfactant mixtures in the concentration range of 0.0–2.5% w/v SLS has been studied pH-metrically at a temperature of 303 K and at an ionic strength of 0.16 mol L−1. The selection of best fit chemical models is based on statistical parameters and residual analysis. The predominant species detected were ML, ML2, and ML2H2 for Co(II), Ni(II), and Cu(II). The trend in the variation of stability constants with the mole fraction of SLS was explained on the basis of electrostatic and non-electrostatic forces. Distribution of the species with pH at different compositions of SLS–water media was also presented.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"27 1","pages":"121 - 126"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2015.1087159","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2015.1087159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Speciation of binary complexes of Co(II), Ni(II), and Cu(II) with L-phenylalanine (Phe) in the presence of water–anionic surfactant mixtures in the concentration range of 0.0–2.5% w/v SLS has been studied pH-metrically at a temperature of 303 K and at an ionic strength of 0.16 mol L−1. The selection of best fit chemical models is based on statistical parameters and residual analysis. The predominant species detected were ML, ML2, and ML2H2 for Co(II), Ni(II), and Cu(II). The trend in the variation of stability constants with the mole fraction of SLS was explained on the basis of electrostatic and non-electrostatic forces. Distribution of the species with pH at different compositions of SLS–water media was also presented.
阴离子胶束介质中Co(II)、Ni(II)和Cu(II)与l -苯丙氨酸二元配合物的形成
摘要研究了Co(II)、Ni(II)和Cu(II)与L-苯丙氨酸(Phe)二元配合物在0.02.5% w/v SLS水-阴离子表面活性剂混合物存在下,在温度为303 K、离子强度为0.16 mol L−1的条件下的ph值形成。最佳拟合化学模型的选择是基于统计参数和残差分析。Co(II)、Ni(II)和Cu(II)的优势菌种为ML、ML2和ML2H2。在静电力和非静电力的基础上,解释了稳定常数随SLS摩尔分数的变化趋势。并给出了不同组成的sls -水介质中菌种的pH分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences. Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”: Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques. Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products. Mobility of substance species in environment and biota, either spatially or temporally. Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions. Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances. Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity. Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信