{"title":"Monitoring of Exposure to and Potential Effects of Contaminants in the Environment","authors":"J. Giesy, J. Newsted","doi":"10.1080/15555270701603751","DOIUrl":null,"url":null,"abstract":"In our lifetimes, much of what was once considered science fiction: space ships, monitoring the environment from space, satellite phones and biomedical advances in the diagnosis and treatment of disease at the molecular level have now become realities. These advances in technology have changed our perceptions and how we interact with the world around us. Also during this time, the world population has doubled several times, our use of natural resources has increased exponentially and we continue to release natural and synthetic compounds to the global environment at an ever-increasing rate. These actions have altered the face of the planet in a multitude of ways. In the ultimate irony, technology has proven to be a double-edged sword that can both threaten to destroy us while also possibly providing the means of our salvation, our means of achieving sustainable development. How can we harness the rapidly developing technological means at our disposal to predict and manage environmental changes? There are exciting changes in technology that may provide the ability to monitor the environment, providing the information we need to allow us to make wise environmental policy decisions. However, even with these advances in technology, the basic dilemma still facing environmental scientists is complexity of ecosystems where known and unknown natural and anthropogenic factors may adversely influence natural processes, resulting in degradation of living resources, environmental services, and human health. Conversely, failure to effectively monitor will lead to our failure to detect threats to human health and reductions in biodiversity, resulting in higher costs associated with after-the-fact remediation and restoration, with the ultimate risk of irreversible damage to environmental resources. Within this context, it is important that as environmental scientists, we provide the necessary information to the general public and regulatory stakeholders that is readily interpretable and is related to valued resources and functions of ecosystems, allowing these stakeholder groups to make informed and effective resource-management decisions in real-time. Efforts are still needed to develop programs to detect, monitor and assess impacts in bio-diverse ecosystems by measuring the right things, in the right places, at the right frequency over sufficient time periods in a cost-effective manner. To increase the efficiency and effectiveness of monitoring programs focusing on “known” chemicals and the potential effects and risks they may pose to biota, including humans, we propose that risk-based monitoring programs be developed incorporating chemical and biological techniques that are rapid, readily implemented, and provide","PeriodicalId":92776,"journal":{"name":"Environmental bioindicators","volume":"2 1","pages":"129-130"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15555270701603751","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental bioindicators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15555270701603751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In our lifetimes, much of what was once considered science fiction: space ships, monitoring the environment from space, satellite phones and biomedical advances in the diagnosis and treatment of disease at the molecular level have now become realities. These advances in technology have changed our perceptions and how we interact with the world around us. Also during this time, the world population has doubled several times, our use of natural resources has increased exponentially and we continue to release natural and synthetic compounds to the global environment at an ever-increasing rate. These actions have altered the face of the planet in a multitude of ways. In the ultimate irony, technology has proven to be a double-edged sword that can both threaten to destroy us while also possibly providing the means of our salvation, our means of achieving sustainable development. How can we harness the rapidly developing technological means at our disposal to predict and manage environmental changes? There are exciting changes in technology that may provide the ability to monitor the environment, providing the information we need to allow us to make wise environmental policy decisions. However, even with these advances in technology, the basic dilemma still facing environmental scientists is complexity of ecosystems where known and unknown natural and anthropogenic factors may adversely influence natural processes, resulting in degradation of living resources, environmental services, and human health. Conversely, failure to effectively monitor will lead to our failure to detect threats to human health and reductions in biodiversity, resulting in higher costs associated with after-the-fact remediation and restoration, with the ultimate risk of irreversible damage to environmental resources. Within this context, it is important that as environmental scientists, we provide the necessary information to the general public and regulatory stakeholders that is readily interpretable and is related to valued resources and functions of ecosystems, allowing these stakeholder groups to make informed and effective resource-management decisions in real-time. Efforts are still needed to develop programs to detect, monitor and assess impacts in bio-diverse ecosystems by measuring the right things, in the right places, at the right frequency over sufficient time periods in a cost-effective manner. To increase the efficiency and effectiveness of monitoring programs focusing on “known” chemicals and the potential effects and risks they may pose to biota, including humans, we propose that risk-based monitoring programs be developed incorporating chemical and biological techniques that are rapid, readily implemented, and provide