Techno-economic feasibility assessment model for integrating hybrid renewable energy systems into power systems of existing ships: A case study of a patrol boat
{"title":"Techno-economic feasibility assessment model for integrating hybrid renewable energy systems into power systems of existing ships: A case study of a patrol boat","authors":"I. Animah, P. Adjei, Eli Kofi Djamesi","doi":"10.1080/20464177.2022.2087272","DOIUrl":null,"url":null,"abstract":"The shipping industry has set out to reduce CO2 emissions by 50% by 2050 compared to 2008, as op. cit. in the note by the International Maritime Organisation to the UNFCCC Talanoa Dialogue. In order to achieve this target, ship owners and operators are to consider replacing the conventional diesel generators and gas turbines with renewable energy and other cleaner power producing systems. In this paper, a techno-economic feasibility evaluation model for integrating hybrid renewable energy systems (HRES) into the power architecture of existing ships for greener and sustainable shipping is presented. For HRES to qualify as technically and economically feasible, a decision is made based on a ‘techno-economic measure’ which is estimated by combining space availability, load served and economic performance. The proposed model is applied to a patrol boat sailing along the Eastern Coast of Ghana with three different proposed HRES. The results from the applied case shows that the most technical and economically feasible HRES for the patrol boat that meets the key performance indicators and offers low GHG emission is a hybrid solar PV, wind turbine and diesel generator system. The results further shows that the proposed model is capable of assisting ship owners to integrate affordable and cleaner energy into the power architecture of ships.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"22 - 37"},"PeriodicalIF":2.6000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/20464177.2022.2087272","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The shipping industry has set out to reduce CO2 emissions by 50% by 2050 compared to 2008, as op. cit. in the note by the International Maritime Organisation to the UNFCCC Talanoa Dialogue. In order to achieve this target, ship owners and operators are to consider replacing the conventional diesel generators and gas turbines with renewable energy and other cleaner power producing systems. In this paper, a techno-economic feasibility evaluation model for integrating hybrid renewable energy systems (HRES) into the power architecture of existing ships for greener and sustainable shipping is presented. For HRES to qualify as technically and economically feasible, a decision is made based on a ‘techno-economic measure’ which is estimated by combining space availability, load served and economic performance. The proposed model is applied to a patrol boat sailing along the Eastern Coast of Ghana with three different proposed HRES. The results from the applied case shows that the most technical and economically feasible HRES for the patrol boat that meets the key performance indicators and offers low GHG emission is a hybrid solar PV, wind turbine and diesel generator system. The results further shows that the proposed model is capable of assisting ship owners to integrate affordable and cleaner energy into the power architecture of ships.
期刊介绍:
The Journal of Marine Engineering and Technology will publish papers concerned with scientific and theoretical research applied to all aspects of marine engineering and technology in addition to issues associated with the application of technology in the marine environment. The areas of interest will include:
• Fuel technology and Combustion
• Power and Propulsion Systems
• Noise and vibration
• Offshore and Underwater Technology
• Computing, IT and communication
• Pumping and Pipeline Engineering
• Safety and Environmental Assessment
• Electrical and Electronic Systems and Machines
• Vessel Manoeuvring and Stabilisation
• Tribology and Power Transmission
• Dynamic modelling, System Simulation and Control
• Heat Transfer, Energy Conversion and Use
• Renewable Energy and Sustainability
• Materials and Corrosion
• Heat Engine Development
• Green Shipping
• Hydrography
• Subsea Operations
• Cargo Handling and Containment
• Pollution Reduction
• Navigation
• Vessel Management
• Decommissioning
• Salvage Procedures
• Legislation
• Ship and floating structure design
• Robotics Salvage Procedures
• Structural Integrity Cargo Handling and Containment
• Marine resource and acquisition
• Risk Analysis Robotics
• Maintenance and Inspection Planning Vessel Management
• Marine security
• Risk Analysis
• Legislation
• Underwater Vehicles
• Plant and Equipment
• Structural Integrity
• Installation and Repair
• Plant and Equipment
• Maintenance and Inspection Planning.