{"title":"Solution of the symmetric band partial inverse eigenvalue problem for the damped mass spring system","authors":"S. Rakshit, B. Datta","doi":"10.1080/17415977.2021.1876688","DOIUrl":null,"url":null,"abstract":"ABSTRACT The structured partial quadratic inverse eigenvalue problem (SPQIEP) is to construct the structured quadratic matrix polynomial using the partial eigendata. The structures arising in physical applications include symmetry, band (tridiagonal, diagonal, pentagonal) etc. The construction of the structured matrix polynomial is the most difficult aspect of this problem and the research on structured inverse eigenvalue problem is rare. In this paper, the symmetric band partial quadratic inverse eigenvalue problem (SBPQIEP) for the damped mass spring system is considered. This problem concerns in finding the symmetric band matrices , and C with bandwidth p from m ( ) prescribed eigenpairs so that the corresponding quadratic matrix polynomial has the given eigenpairs as its eigenvalues and eigenvectors. In general, SBPQIEP is very hard to solve due to the additional band structure constraint. We propose a novel method, based on the matrix-vectorization and Kronecker product of matrices for solving this problem. Furthermore, explicit expressions for general solutions are presented. Numerical experiments on a spring mass problem are presented to illustrate the applicability and the practical usefulness of the proposed method.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"11 1","pages":"1497 - 1518"},"PeriodicalIF":1.1000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2021.1876688","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1876688","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The structured partial quadratic inverse eigenvalue problem (SPQIEP) is to construct the structured quadratic matrix polynomial using the partial eigendata. The structures arising in physical applications include symmetry, band (tridiagonal, diagonal, pentagonal) etc. The construction of the structured matrix polynomial is the most difficult aspect of this problem and the research on structured inverse eigenvalue problem is rare. In this paper, the symmetric band partial quadratic inverse eigenvalue problem (SBPQIEP) for the damped mass spring system is considered. This problem concerns in finding the symmetric band matrices , and C with bandwidth p from m ( ) prescribed eigenpairs so that the corresponding quadratic matrix polynomial has the given eigenpairs as its eigenvalues and eigenvectors. In general, SBPQIEP is very hard to solve due to the additional band structure constraint. We propose a novel method, based on the matrix-vectorization and Kronecker product of matrices for solving this problem. Furthermore, explicit expressions for general solutions are presented. Numerical experiments on a spring mass problem are presented to illustrate the applicability and the practical usefulness of the proposed method.
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.