A robust approach to heteroskedasticity, error serial correlation and slope heterogeneity in linear models with interactive effects for large panel data

IF 2.9 2区 数学 Q1 ECONOMICS
Guowei Cui, Kazuhiko Hayakawa, Shuichi Nagata, Takashi Yamagata
{"title":"A robust approach to heteroskedasticity, error serial correlation and slope heterogeneity in linear models with interactive effects for large panel data","authors":"Guowei Cui, Kazuhiko Hayakawa, Shuichi Nagata, Takashi Yamagata","doi":"10.1080/07350015.2022.2077349","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we propose a robust approach against heteroscedasticity, error serial correlation and slope heterogeneity in linear models with interactive effects for large panel data. First, consistency and asymptotic normality of the pooled iterated principal component (IPC) estimator for random coefficient and homogeneous slope models are established. Then, we prove the asymptotic validity of the associated Wald test for slope parameter restrictions based on the panel heteroscedasticity and autocorrelation consistent (PHAC) variance matrix estimator for both random coefficient and homogeneous slope models, which does not require the Newey-West type time-series parameter truncation. These results asymptotically justify the use of the same pooled IPC estimator and the PHAC standard error for both homogeneous-slope and heterogeneous-slope models. This robust approach can significantly reduce the model selection uncertainty for applied researchers. In addition, we propose a Lagrange Multiplier (LM) test for correlated random coefficients with covariates. This test has nontrivial power against correlated random coefficients, but not for random coefficients and homogeneous slopes. The LM test is important because the IPC estimator becomes inconsistent with correlated random coefficients. The finite sample evidence and an empirical application support the reliability and the usefulness of our robust approach.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2077349","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this article, we propose a robust approach against heteroscedasticity, error serial correlation and slope heterogeneity in linear models with interactive effects for large panel data. First, consistency and asymptotic normality of the pooled iterated principal component (IPC) estimator for random coefficient and homogeneous slope models are established. Then, we prove the asymptotic validity of the associated Wald test for slope parameter restrictions based on the panel heteroscedasticity and autocorrelation consistent (PHAC) variance matrix estimator for both random coefficient and homogeneous slope models, which does not require the Newey-West type time-series parameter truncation. These results asymptotically justify the use of the same pooled IPC estimator and the PHAC standard error for both homogeneous-slope and heterogeneous-slope models. This robust approach can significantly reduce the model selection uncertainty for applied researchers. In addition, we propose a Lagrange Multiplier (LM) test for correlated random coefficients with covariates. This test has nontrivial power against correlated random coefficients, but not for random coefficients and homogeneous slopes. The LM test is important because the IPC estimator becomes inconsistent with correlated random coefficients. The finite sample evidence and an empirical application support the reliability and the usefulness of our robust approach.
大型面板数据中具有交互效应的线性模型中的异方差、误差序列相关和斜率异质性的稳健方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信