Mean-Structure and Autocorrelation Consistent Covariance Matrix Estimation

IF 2.9 2区 数学 Q1 ECONOMICS
Kin Wai Chan
{"title":"Mean-Structure and Autocorrelation Consistent Covariance Matrix Estimation","authors":"Kin Wai Chan","doi":"10.1080/07350015.2020.1796397","DOIUrl":null,"url":null,"abstract":"Abstract We consider estimation of the asymptotic covariance matrix in nonstationary time series. A nonparametric estimator that is robust against unknown forms of trends and possibly a divergent number of change points (CPs) is proposed. It is algorithmically fast because neither a search for CPs, estimation of trends, nor cross-validation is required. Together with our proposed automatic optimal bandwidth selector, the resulting estimator is both statistically and computationally efficient. It is, therefore, useful in many statistical procedures, for example, CPs detection and construction of simultaneous confidence bands of trends. Empirical studies on four stock market indices are also discussed.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07350015.2020.1796397","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2020.1796397","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract We consider estimation of the asymptotic covariance matrix in nonstationary time series. A nonparametric estimator that is robust against unknown forms of trends and possibly a divergent number of change points (CPs) is proposed. It is algorithmically fast because neither a search for CPs, estimation of trends, nor cross-validation is required. Together with our proposed automatic optimal bandwidth selector, the resulting estimator is both statistically and computationally efficient. It is, therefore, useful in many statistical procedures, for example, CPs detection and construction of simultaneous confidence bands of trends. Empirical studies on four stock market indices are also discussed.
均值结构和自相关一致协方差矩阵估计
摘要研究非平稳时间序列中渐近协方差矩阵的估计。提出了一种对未知趋势形式和可能的发散数变化点(CPs)具有鲁棒性的非参数估计量。它在算法上是快速的,因为既不需要搜索CPs,也不需要估计趋势,也不需要交叉验证。与我们提出的自动最优带宽选择器一起,得到的估计器在统计和计算上都是高效的。因此,它在许多统计程序中是有用的,例如,CPs检测和趋势的同时置信带的构建。本文还对四种股票市场指数进行了实证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信