{"title":"Sorption and desorption of arsenic from sandy soils: Column studies","authors":"P. Kuhlmeier","doi":"10.1080/15320389709383544","DOIUrl":null,"url":null,"abstract":"Rate‐limited sorption/desorption can have a profound effect upon the transport of sorbing contaminants. Numerical and analytical models used to predict chemical movement through the subsurface rarely incorporate the effects of nonlinear sorption and desorption kinetics, resulting in potentially large overestimates of mass extractability. Mass transfer characteristics of arsenic‐contaminated soils at the site of a former arsenical herbicide manufacturer in Houston, Texas, were examined in the laboratory using soil columns. Unaffected soils comprised of silty sands to coarse sands were collected from the uppermost aquifer. Two soil columns were loaded with a known mass of mixed organic and inorganic forms of arsenic resident in site ground water. A third control column was prepared with dry 20 × 30 mesh ASTM silica sand. Leachate samples were collected from each void volume until arsenic breakthrough was achieved. The dynamic test applied a continuing head of water, operating in an upflow mode through 4‐in....","PeriodicalId":49505,"journal":{"name":"Soil & Sediment Contamination","volume":"6 1","pages":"21-36"},"PeriodicalIF":1.6000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15320389709383544","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Sediment Contamination","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15320389709383544","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 25
Abstract
Rate‐limited sorption/desorption can have a profound effect upon the transport of sorbing contaminants. Numerical and analytical models used to predict chemical movement through the subsurface rarely incorporate the effects of nonlinear sorption and desorption kinetics, resulting in potentially large overestimates of mass extractability. Mass transfer characteristics of arsenic‐contaminated soils at the site of a former arsenical herbicide manufacturer in Houston, Texas, were examined in the laboratory using soil columns. Unaffected soils comprised of silty sands to coarse sands were collected from the uppermost aquifer. Two soil columns were loaded with a known mass of mixed organic and inorganic forms of arsenic resident in site ground water. A third control column was prepared with dry 20 × 30 mesh ASTM silica sand. Leachate samples were collected from each void volume until arsenic breakthrough was achieved. The dynamic test applied a continuing head of water, operating in an upflow mode through 4‐in....
期刊介绍:
When it comes to assessing and mitigating contaminated soils and sediments, there is no substitute for having the very latest tools, techniques and methodologies at your fingertips to help you deal with these issues efficiently and cost-effectively.
This is just the kind of essential expertise you’ll only find in Soil and Sediment Contamination . This internationally, peer-reviewed publication focuses on soil and sediment contamination from:
-Sludges-
Petroleum-
Petrochemicals-
Chlorinated hydrocarbons-
Pesticides-
Lead and other heavy metals.
Get detailed descriptions of all the latest and most efficient offsite and in situ remediation techniques, strategies for assessing health effects and hazards, and tips for dealing with everyday regulatory and legal issues. With the state-of-the-art tools that Soil and Sediment Contamination provides, you can successfully assess, mitigate, and solve both rural and urban soil contamination problems as efficiently and economically as possible.