Multi-Player Diffusion Games on Graph Classes

Q3 Mathematics
L. Bulteau, Vincent Froese, Nimrod Talmon
{"title":"Multi-Player Diffusion Games on Graph Classes","authors":"L. Bulteau, Vincent Froese, Nimrod Talmon","doi":"10.1080/15427951.2016.1197167","DOIUrl":null,"url":null,"abstract":"Abstract We study competitive diffusion games on graphs introduced by Alon et al. [1] to model the spread of influence in social networks. Extending results of Roshanbin [8] for two players, we investigate the existence of pure Nash equilibriafor at least three players on different classes of graphs including paths, cycles, grid graphs and hypercubes; as a main contribution, we answer an open question proving that there is no Nash equilibriumfor three players on m × n grids with min {m, n} ≥ 5. Further, extending results of Etesami and Basar [3] for two players, we prove the existence of pure Nash equilibriafor four players on every d-dimensional hypercube.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"112 1","pages":"363 - 380"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2016.1197167","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2016.1197167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 15

Abstract

Abstract We study competitive diffusion games on graphs introduced by Alon et al. [1] to model the spread of influence in social networks. Extending results of Roshanbin [8] for two players, we investigate the existence of pure Nash equilibriafor at least three players on different classes of graphs including paths, cycles, grid graphs and hypercubes; as a main contribution, we answer an open question proving that there is no Nash equilibriumfor three players on m × n grids with min {m, n} ≥ 5. Further, extending results of Etesami and Basar [3] for two players, we prove the existence of pure Nash equilibriafor four players on every d-dimensional hypercube.
图类上的多玩家扩散博弈
本文研究了Alon等人引入的图上的竞争扩散博弈,以模拟社交网络中影响力的传播。推广Roshanbin[8]关于两参与者的结果,研究了至少三个参与者在不同类型的图(包括路径、循环、网格图和超立方体)上的纯纳什均衡的存在性;作为主要贡献,我们回答了一个开放的问题,证明了在m × n个网格上,当min {m, n}≥5时,三个参与者不存在纳什均衡。进一步推广了Etesami和Basar[3]关于两参与人的结果,证明了在每个d维超立方体上4参与人的纯纳什均衡的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信