Exploiting The Structure of Bipartite Graphs for Algebraic and Spectral Graph Theory Applications

Q3 Mathematics
Jérôme Kunegis
{"title":"Exploiting The Structure of Bipartite Graphs for Algebraic and Spectral Graph Theory Applications","authors":"Jérôme Kunegis","doi":"10.1080/15427951.2014.958250","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we extend several algebraic graph analysis methods to bipartite networks. In various areas of science, engineering, and commerce, many types of information can be represented as networks, and thus, the discipline of network analysis plays an important role in these domains. A powerful and widespread class of network analysis methods is based on algebraic graph theory, i.e., representing graphs as square adjacency matrices. However, many networks are of a very specific form that clashes with that representation: they are bipartite. That is, they consist of two node types, with each edge connecting a node of one type with a node of the other type. Examples of bipartite networks (also called two-mode networks) are persons and the social groups they belong to, musical artists and the musical genres they play, and text documents and the words they contain. In fact, any type of feature that can be represented by a categorical variable can be interpreted as a bipartite network. Although bipartite networks are widespread, most literature in the area of network analysis focuses on unipartite networks, i.e., those networks with only a single type of node. The purpose of this article is to extend a selection of important algebraic network analysis methods to bipartite networks, showing that many methods from algebraic graph theory can be applied to bipartite networks, with only minor modifications. We show methods for clustering, visualization, and link prediction. Additionally, we introduce new algebraic methods for measuring the bipartivity in near-bipartite graphs.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"11 1","pages":"201 - 321"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2014.958250","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2014.958250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 22

Abstract

Abstract In this article, we extend several algebraic graph analysis methods to bipartite networks. In various areas of science, engineering, and commerce, many types of information can be represented as networks, and thus, the discipline of network analysis plays an important role in these domains. A powerful and widespread class of network analysis methods is based on algebraic graph theory, i.e., representing graphs as square adjacency matrices. However, many networks are of a very specific form that clashes with that representation: they are bipartite. That is, they consist of two node types, with each edge connecting a node of one type with a node of the other type. Examples of bipartite networks (also called two-mode networks) are persons and the social groups they belong to, musical artists and the musical genres they play, and text documents and the words they contain. In fact, any type of feature that can be represented by a categorical variable can be interpreted as a bipartite network. Although bipartite networks are widespread, most literature in the area of network analysis focuses on unipartite networks, i.e., those networks with only a single type of node. The purpose of this article is to extend a selection of important algebraic network analysis methods to bipartite networks, showing that many methods from algebraic graph theory can be applied to bipartite networks, with only minor modifications. We show methods for clustering, visualization, and link prediction. Additionally, we introduce new algebraic methods for measuring the bipartivity in near-bipartite graphs.
二部图的结构在代数和谱图理论中的应用
摘要本文将几种代数图分析方法推广到二部网络。在科学、工程和商业的各个领域中,许多类型的信息可以表示为网络,因此,网络分析学科在这些领域中起着重要作用。一类强大而广泛的网络分析方法是基于代数图论,即,将图表示为方形邻接矩阵。然而,许多网络具有一种非常特殊的形式,与这种表示相冲突:它们是二分的。也就是说,它们由两种节点类型组成,每条边连接一种类型的节点和另一种类型的节点。双部网络(也称为双模式网络)的例子包括人和他们所属的社会群体,音乐艺术家和他们演奏的音乐类型,以及文本文件和它们包含的单词。事实上,任何可以用分类变量表示的特征都可以被解释为二部网络。虽然二部网络很普遍,但网络分析领域的大多数文献都集中在单部网络上,即那些只有单一类型节点的网络。本文的目的是将一些重要的代数网络分析方法扩展到二部网络,表明代数图论中的许多方法可以应用于二部网络,只需要进行微小的修改。我们展示了聚类、可视化和链接预测的方法。此外,我们引入了新的代数方法来测量近二部图的二部分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信