Sublinear Column-wise Actions of the Matrix Exponential on Social Networks

Q3 Mathematics
D. Gleich, Kyle Kloster
{"title":"Sublinear Column-wise Actions of the Matrix Exponential on Social Networks","authors":"D. Gleich, Kyle Kloster","doi":"10.1080/15427951.2014.971203","DOIUrl":null,"url":null,"abstract":"We consider stochastic transition matrices from large social and information networks. For these matrices, we describe and evaluate three fast methods to estimate one column of the matrix exponential. The methods are designed to exploit the properties inherent in social networks, such as a power-law degree distribution. Using only this property, we prove that one of our three algorithms has a sublinear runtime. We present further experimental evidence showing that all three of them run quickly on social networks with billions of edges, and they accurately identify the largest elements of the column.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"11 1","pages":"352 - 384"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2014.971203","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2014.971203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 13

Abstract

We consider stochastic transition matrices from large social and information networks. For these matrices, we describe and evaluate three fast methods to estimate one column of the matrix exponential. The methods are designed to exploit the properties inherent in social networks, such as a power-law degree distribution. Using only this property, we prove that one of our three algorithms has a sublinear runtime. We present further experimental evidence showing that all three of them run quickly on social networks with billions of edges, and they accurately identify the largest elements of the column.
社会网络上矩阵指数的亚线性列行为
我们考虑来自大型社会和信息网络的随机转移矩阵。对于这些矩阵,我们描述并评价了三种快速估计矩阵指数一列的方法。这些方法旨在利用社会网络固有的属性,如幂律度分布。仅使用这个性质,我们就证明了三种算法中的一种具有次线性运行时。我们提供了进一步的实验证据,表明这三种方法都能在拥有数十亿条边的社交网络上快速运行,并且它们能准确地识别出列中最大的元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信