Concentration and Stability of Community-Detecting Functions on Random Networks

Q3 Mathematics
Weituo Zhang, C. Lim
{"title":"Concentration and Stability of Community-Detecting Functions on Random Networks","authors":"Weituo Zhang, C. Lim","doi":"10.1080/15427951.2012.749437","DOIUrl":null,"url":null,"abstract":"We propose a general form of community-detecting functions for finding communities—an optimal partition of a random network—and examine the concentration and stability of the function values using the bounded difference martingale method. We derive LDP inequalities for both the general case and several specific community-detecting functions: modularity, graph bipartitioning, and q-Potts community structure. We also discuss the concentration and stability of community-detecting functions on different types of random networks: sparse and nonsparse networks and some examples such as ER and CL networks.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.749437","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2012.749437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a general form of community-detecting functions for finding communities—an optimal partition of a random network—and examine the concentration and stability of the function values using the bounded difference martingale method. We derive LDP inequalities for both the general case and several specific community-detecting functions: modularity, graph bipartitioning, and q-Potts community structure. We also discuss the concentration and stability of community-detecting functions on different types of random networks: sparse and nonsparse networks and some examples such as ER and CL networks.
随机网络上社区检测函数的集中与稳定性
我们提出了一种用于寻找社区的一般形式的社区检测函数-随机网络的最优划分-并使用有界差分鞅方法检验了函数值的集中和稳定性。我们推导了一般情况下的LDP不等式和一些特定的社区检测函数:模块化、图双分区和q-Potts社区结构。讨论了社区检测函数在不同类型的随机网络(稀疏网络和非稀疏网络)上的集中性和稳定性,并举例说明了ER网络和CL网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信