Extension and Robustness of Transitivity Clustering for Protein–Protein Interaction Network Analysis

Q3 Mathematics
T. Wittkop, S. Rahmann, Richard Röttger, Sebastian Böcker, J. Baumbach
{"title":"Extension and Robustness of Transitivity Clustering for Protein–Protein Interaction Network Analysis","authors":"T. Wittkop, S. Rahmann, Richard Röttger, Sebastian Böcker, J. Baumbach","doi":"10.1080/15427951.2011.604559","DOIUrl":null,"url":null,"abstract":"Abstract Partitioning biological data objects into groups such that the objects within the groups share common traits is a longstanding challenge in computational biology. Recently, we developed and established transitivity clustering, a partitioning approach based on weighted transitive graph projection that utilizes a single similarity threshold as density parameter. In previous publications, we concentrated on the graphical user interface and on concrete biomedical application protocols. Here, we contribute the following theoretical considerations: (1) We provide proofs that the average similarity between objects from the same cluster is above the user-given threshold and that the average similarity between objects from different clusters is below the threshold. (2) We extend transitivity clustering to an overlapping clustering tool by integrating two new approaches. (3) We demonstrate the power of transitivity clustering for protein-complex detection. We evaluate our approaches against others by utilizing gold-standard data that was previously used by Brohée et al. for reviewing existing bioinformatics clustering tools. The extended version of this article is available online at http://transclust.mpi-inf.mpg.de .","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2011.604559","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2011.604559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

Abstract

Abstract Partitioning biological data objects into groups such that the objects within the groups share common traits is a longstanding challenge in computational biology. Recently, we developed and established transitivity clustering, a partitioning approach based on weighted transitive graph projection that utilizes a single similarity threshold as density parameter. In previous publications, we concentrated on the graphical user interface and on concrete biomedical application protocols. Here, we contribute the following theoretical considerations: (1) We provide proofs that the average similarity between objects from the same cluster is above the user-given threshold and that the average similarity between objects from different clusters is below the threshold. (2) We extend transitivity clustering to an overlapping clustering tool by integrating two new approaches. (3) We demonstrate the power of transitivity clustering for protein-complex detection. We evaluate our approaches against others by utilizing gold-standard data that was previously used by Brohée et al. for reviewing existing bioinformatics clustering tools. The extended version of this article is available online at http://transclust.mpi-inf.mpg.de .
传递性聚类在蛋白质-蛋白质相互作用网络分析中的可拓性和鲁棒性
将生物数据对象划分为组,使组内的对象具有共同的特征,是计算生物学中一个长期存在的挑战。最近,我们开发并建立了传递性聚类,这是一种基于加权传递图投影的划分方法,利用单个相似阈值作为密度参数。在以前的出版物中,我们主要关注图形用户界面和具体的生物医学应用协议。在这里,我们提供了以下理论考虑:(1)我们提供了证明,同一簇中对象之间的平均相似度高于用户给定的阈值,而不同簇中对象之间的平均相似度低于阈值。(2)通过整合两种新方法,将传递性聚类扩展为重叠聚类工具。(3)我们证明了传递性聚类在蛋白质复合物检测中的作用。我们利用broh等人先前用于审查现有生物信息学聚类工具的金标准数据,对我们的方法进行了评估。本文的扩展版本可在http://transclust.mpi-inf.mpg.de上在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信