Alternative tree structures for estimating nested logit models with mixed preference data

C. Wen
{"title":"Alternative tree structures for estimating nested logit models with mixed preference data","authors":"C. Wen","doi":"10.1080/18128600903401236","DOIUrl":null,"url":null,"abstract":"The methods used with data from a single source are inadequate to the challenge of modelling choice behaviour with data from multiple sources. Two distinct formulations, namely the non-normalised nested logit and utility-maximising nested logit models, have been proposed to estimate discrete choice models with mixed revealed preference and stated preference data, in which each data type has the multinomial logit or nested logit form. The article uses two alternative nested logit model formulations to demonstrate how to correctly set up tree structures for estimating nested logit models with mixed preference data. This article provides formulae for recovering correct utility function, dissimilarity and scale parameter estimates. Estimations and correction procedures are empirically illustrated and can be applied to other nested logit models with multiple data sources.","PeriodicalId":49416,"journal":{"name":"Transportmetrica","volume":"6 1","pages":"291 - 309"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/18128600903401236","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/18128600903401236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The methods used with data from a single source are inadequate to the challenge of modelling choice behaviour with data from multiple sources. Two distinct formulations, namely the non-normalised nested logit and utility-maximising nested logit models, have been proposed to estimate discrete choice models with mixed revealed preference and stated preference data, in which each data type has the multinomial logit or nested logit form. The article uses two alternative nested logit model formulations to demonstrate how to correctly set up tree structures for estimating nested logit models with mixed preference data. This article provides formulae for recovering correct utility function, dissimilarity and scale parameter estimates. Estimations and correction procedures are empirically illustrated and can be applied to other nested logit models with multiple data sources.
用于估计具有混合偏好数据的嵌套logit模型的备选树结构
使用单一来源的数据的方法不足以对来自多个来源的数据的选择行为建模的挑战。提出了两种不同的公式,即非规范化嵌套logit和效用最大化嵌套logit模型,用于估计具有混合显示偏好和陈述偏好数据的离散选择模型,其中每种数据类型都具有多项logit或嵌套logit形式。本文使用两种备选的嵌套logit模型公式来演示如何正确地设置树结构,以估计具有混合偏好数据的嵌套logit模型。本文提供了恢复正确效用函数、不相似度和尺度参数估计的公式。估计和校正过程是经验说明,并可应用于其他嵌套的logit模型与多个数据源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportmetrica
Transportmetrica 工程技术-运输科技
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信