Hyun-ho Chang, Dongjoo Park, Seungjae Lee, Ho-sang Lee, S. Baek
{"title":"Dynamic multi-interval bus travel time prediction using bus transit data","authors":"Hyun-ho Chang, Dongjoo Park, Seungjae Lee, Ho-sang Lee, S. Baek","doi":"10.1080/18128600902929591","DOIUrl":null,"url":null,"abstract":"The objective of this research is to develop a dynamic model to forecast multi-interval path travel times between bus stops of origin and destination. The research also intends to test the proposed model using real-world data. This research was brought about by the shortcomings of the existing real-time based short-term-prediction models, which have been widely utilised for single interval predictions. The developed model is based on the Nearest Neighbour Non-Parametric Regression using historical and current data collected by the Automatic Vehicle Location technology. In a test with real-world bus data in Seoul, Korea, the proposed multi-interval-prediction model performed effectively in terms of both prediction accuracy and computing time.","PeriodicalId":49416,"journal":{"name":"Transportmetrica","volume":"6 1","pages":"19 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/18128600902929591","citationCount":"125","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/18128600902929591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125
Abstract
The objective of this research is to develop a dynamic model to forecast multi-interval path travel times between bus stops of origin and destination. The research also intends to test the proposed model using real-world data. This research was brought about by the shortcomings of the existing real-time based short-term-prediction models, which have been widely utilised for single interval predictions. The developed model is based on the Nearest Neighbour Non-Parametric Regression using historical and current data collected by the Automatic Vehicle Location technology. In a test with real-world bus data in Seoul, Korea, the proposed multi-interval-prediction model performed effectively in terms of both prediction accuracy and computing time.