Harun A. R. Pramanik, Bandashisha Kharpan, B. Bhattacharya, C. Bhattacharjee, P. Paul, U. Sarkar, S. K. Prasad, D. S. S. Rao
{"title":"Mononuclear photoluminescent salicylaldimato copper(II) complex: synthesis, characterization, mesomorphic investigation and DFT study","authors":"Harun A. R. Pramanik, Bandashisha Kharpan, B. Bhattacharya, C. Bhattacharjee, P. Paul, U. Sarkar, S. K. Prasad, D. S. S. Rao","doi":"10.1080/1539445X.2023.2232777","DOIUrl":null,"url":null,"abstract":"ABSTRACT A new photoluminescent disc-like copper (II) metallomesogen of the type [CuL2] {H2L = 2,4-bis((E)-((4-(hexadecyloxy)phenyl)imino)methyl)phenol} have been synthesized. The compounds were characterized by elemental analyses, Fourier transform infrared spectroscopy (FTIR), 1H, 13C nuclear magnetic resonance (NMR), ultraviolet – visible spectroscopy (UV – Vis), thermogravimetric analysis (TGA) and high-resolution mass spectrometry. Mesomorphic behavior of the compounds was probed with the help of polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). The organization of the molecules in the mesophase was investigated by X-ray diffraction techniques. The ligand is non-mesogenic but the copper complex exhibited thermally stable columnar mesophases at about 86°C. The copper complex is a blue-light emitter both in solution and in the solid state. The Density Functional Theory (DFT) study was carried out using 6–31 G (d, p) basis set with unrestricted B3LYP level to obtain a stable, optimized structure, which revealed a distorted square-planar geometry for the copper complexes.","PeriodicalId":22140,"journal":{"name":"Soft Materials","volume":"21 1","pages":"280 - 292"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1539445X.2023.2232777","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT A new photoluminescent disc-like copper (II) metallomesogen of the type [CuL2] {H2L = 2,4-bis((E)-((4-(hexadecyloxy)phenyl)imino)methyl)phenol} have been synthesized. The compounds were characterized by elemental analyses, Fourier transform infrared spectroscopy (FTIR), 1H, 13C nuclear magnetic resonance (NMR), ultraviolet – visible spectroscopy (UV – Vis), thermogravimetric analysis (TGA) and high-resolution mass spectrometry. Mesomorphic behavior of the compounds was probed with the help of polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). The organization of the molecules in the mesophase was investigated by X-ray diffraction techniques. The ligand is non-mesogenic but the copper complex exhibited thermally stable columnar mesophases at about 86°C. The copper complex is a blue-light emitter both in solution and in the solid state. The Density Functional Theory (DFT) study was carried out using 6–31 G (d, p) basis set with unrestricted B3LYP level to obtain a stable, optimized structure, which revealed a distorted square-planar geometry for the copper complexes.
期刊介绍:
Providing a common forum for all soft matter scientists, Soft Materials covers theory, simulation, and experimental research in this rapidly expanding and interdisciplinary field. As soft materials are often at the heart of modern technologies, soft matter science has implications and applications in many areas ranging from biology to engineering.
Unlike many journals which focus primarily on individual classes of materials or particular applications, Soft Materials draw on all physical, chemical, materials science, and biological aspects of soft matter. Featured topics include polymers, biomacromolecules, colloids, membranes, Langmuir-Blodgett films, liquid crystals, granular matter, soft interfaces, complex fluids, surfactants, gels, nanomaterials, self-organization, supramolecular science, molecular recognition, soft glasses, amphiphiles, foams, and active matter.
Truly international in scope, Soft Materials contains original research, invited reviews, in-depth technical tutorials, and book reviews.