{"title":"An investigation of the mutagenic activity of salamide – a major impurity of hydrochlorothiazide","authors":"E. Emerce, I. Cok, Sibel Sarı, Omur Bostanci","doi":"10.1080/15376516.2016.1222642","DOIUrl":null,"url":null,"abstract":"Abstract Hydrochlorothiazide is a widely used antihypertensive agent and one of its major impurities, salamide (4-amino-6-chlorobenzene-1,3-disulphonamide), has a chemical structure containing a primary amino group, a functional group that has previously been reported to be associated with carcinogenic activity. It is known that hydrochlorothiazide purity is a challenging problem for the pharmaceutical industry. As there were no prior mutagenicity data for the impurity salamide, the aim was to investigate its mutagenicity in this study. Salamide was tested for mutagenic potential in Salmonella typhimurium TA98, TA100, TA 1535, TA 1537, and E. coli WP2 uvrA + E. coli WP2 [pKM101] strains at six different concentrations, the highest concentration being the 5000 μg/plate. In both the presence and absence of the metabolic activation system, no mutagenic activity was observed. Results indicated that salamide should be classified as an ordinary impurity and controlled according to Q3A(R2) and Q3B(R2) guidelines.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"26 1","pages":"644 - 649"},"PeriodicalIF":2.8000,"publicationDate":"2016-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15376516.2016.1222642","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2016.1222642","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Hydrochlorothiazide is a widely used antihypertensive agent and one of its major impurities, salamide (4-amino-6-chlorobenzene-1,3-disulphonamide), has a chemical structure containing a primary amino group, a functional group that has previously been reported to be associated with carcinogenic activity. It is known that hydrochlorothiazide purity is a challenging problem for the pharmaceutical industry. As there were no prior mutagenicity data for the impurity salamide, the aim was to investigate its mutagenicity in this study. Salamide was tested for mutagenic potential in Salmonella typhimurium TA98, TA100, TA 1535, TA 1537, and E. coli WP2 uvrA + E. coli WP2 [pKM101] strains at six different concentrations, the highest concentration being the 5000 μg/plate. In both the presence and absence of the metabolic activation system, no mutagenic activity was observed. Results indicated that salamide should be classified as an ordinary impurity and controlled according to Q3A(R2) and Q3B(R2) guidelines.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.