Developments in EEG Analysis, Protocol Selection, and Feedback Delivery

Bill Scott
{"title":"Developments in EEG Analysis, Protocol Selection, and Feedback Delivery","authors":"Bill Scott","doi":"10.1080/10874208.2011.597260","DOIUrl":null,"url":null,"abstract":"It stands to reason that the better the extracted information from the electroencephalogram (EEG), the better the data analysis and subsequent EEG biofeedback. At the core of digital signal processing used in our field is a linear filtering technology that discards significant EEG features. Brainwaves are nonlinear, nonstationary, and noisy signals. The purpose of this letter to the editor is to illuminate the Hilbert-Huang Transform's (HHT's) (Huang et al., 1998) ability to empirically quantify nonlinear, nonstationary signals such as the EEG. I demonstrate how this technique can detect and extract a tiny noisy complex waveform from a raw signal while preserving the majority of the important information from the original source. I contrast and compare the HHT to other quantitative techniques.","PeriodicalId":88271,"journal":{"name":"Journal of neurotherapy","volume":"15 1","pages":"262-267"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10874208.2011.597260","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10874208.2011.597260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It stands to reason that the better the extracted information from the electroencephalogram (EEG), the better the data analysis and subsequent EEG biofeedback. At the core of digital signal processing used in our field is a linear filtering technology that discards significant EEG features. Brainwaves are nonlinear, nonstationary, and noisy signals. The purpose of this letter to the editor is to illuminate the Hilbert-Huang Transform's (HHT's) (Huang et al., 1998) ability to empirically quantify nonlinear, nonstationary signals such as the EEG. I demonstrate how this technique can detect and extract a tiny noisy complex waveform from a raw signal while preserving the majority of the important information from the original source. I contrast and compare the HHT to other quantitative techniques.
脑电图分析、方案选择和反馈传递的进展
因此,从脑电图中提取的信息越好,数据分析和后续的脑电图生物反馈就越好。在我们的领域中使用的数字信号处理的核心是线性滤波技术,该技术丢弃了重要的EEG特征。脑电波是非线性的、非平稳的、有噪声的信号。这封致编辑的信的目的是阐明Hilbert-Huang变换(HHT) (Huang et al., 1998)经验量化非线性、非平稳信号(如脑电图)的能力。我演示了这种技术如何从原始信号中检测和提取微小的噪声复杂波形,同时保留原始信号中的大部分重要信息。我将HHT与其他定量技术进行对比和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信