A new budget allocation framework for selecting top simulated designs

Siyang Gao, Weiwei Chen
{"title":"A new budget allocation framework for selecting top simulated designs","authors":"Siyang Gao, Weiwei Chen","doi":"10.1080/0740817X.2016.1156788","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, the problem of selecting an optimal subset from a finite set of simulated designs is considered. Given the total simulation budget constraint, the selection problem aims to maximize the Probability of Correct Selection (PCS) of the top m designs. To simplify the complexity of the PCS, an approximated probability measure is developed and an asymptotically optimal solution of the resulting problem is derived. A subset selection procedure, which is easy to implement in practice, is then designed. More important, we provide some useful insights on characterizing an efficient subset selection rule and how it can be achieved by adjusting the simulation budgets allocated to all of the designs.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"855 - 863"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2016.1156788","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2016.1156788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

ABSTRACT In this article, the problem of selecting an optimal subset from a finite set of simulated designs is considered. Given the total simulation budget constraint, the selection problem aims to maximize the Probability of Correct Selection (PCS) of the top m designs. To simplify the complexity of the PCS, an approximated probability measure is developed and an asymptotically optimal solution of the resulting problem is derived. A subset selection procedure, which is easy to implement in practice, is then designed. More important, we provide some useful insights on characterizing an efficient subset selection rule and how it can be achieved by adjusting the simulation budgets allocated to all of the designs.
一种新的顶级仿真设计选择预算分配框架
摘要本文考虑了从有限的模拟设计集合中选择最优子集的问题。在总仿真预算约束下,选择问题的目标是最大化前m个设计的正确选择概率(PCS)。为了简化PCS的复杂性,提出了一个近似的概率测度,并给出了问题的渐近最优解。然后设计了一个易于实现的子集选择程序。更重要的是,我们提供了一些关于描述有效子集选择规则的有用见解,以及如何通过调整分配给所有设计的仿真预算来实现它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信