A false discovery approach for scanning spatial disease clusters with arbitrary shapes

Yanting Li, L. Shu, F. Tsung
{"title":"A false discovery approach for scanning spatial disease clusters with arbitrary shapes","authors":"Yanting Li, L. Shu, F. Tsung","doi":"10.1080/0740817X.2015.1133940","DOIUrl":null,"url":null,"abstract":"ABSTRACT The spatial scan statistic is one of the main tools for testing the presence of clusters in a geographical region. The recently proposed Fast Subset Scan (FSS) method represents an important extension, as it is computationally efficient and enables detection of clusters with arbitrary shapes. Aimed at automatically and simultaneously detecting multiple clusters of any shapes, this article explores the False Discovery (FD) approach originated from multiple hypothesis testing. We show that the FD approach can provide a higher detection power and better identification capability than the standard scan and FSS methods, on average.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"684 - 698"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1133940","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1133940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The spatial scan statistic is one of the main tools for testing the presence of clusters in a geographical region. The recently proposed Fast Subset Scan (FSS) method represents an important extension, as it is computationally efficient and enables detection of clusters with arbitrary shapes. Aimed at automatically and simultaneously detecting multiple clusters of any shapes, this article explores the False Discovery (FD) approach originated from multiple hypothesis testing. We show that the FD approach can provide a higher detection power and better identification capability than the standard scan and FSS methods, on average.
一种用于扫描任意形状空间疾病簇的错误发现方法
空间扫描统计量是检测地理区域内集群是否存在的主要工具之一。最近提出的快速子集扫描(FSS)方法是一种重要的扩展,因为它具有计算效率,并且可以检测任意形状的簇。为了自动同时检测任意形状的多个聚类,本文探讨了基于多假设检验的错误发现(FD)方法。我们表明,平均而言,FD方法可以提供比标准扫描和FSS方法更高的检测功率和更好的识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信