Improving the Selection of Air Force Pilot Candidates Using Latent Trajectories: An Application of Latent Growth Mixture Modeling

A. Gomes, José G. Dias
{"title":"Improving the Selection of Air Force Pilot Candidates Using Latent Trajectories: An Application of Latent Growth Mixture Modeling","authors":"A. Gomes, José G. Dias","doi":"10.1080/10508414.2015.1130489","DOIUrl":null,"url":null,"abstract":"Latent growth mixture modeling is a statistical approach that models longitudinal data, grouping individuals who share similar longitudinal data patterns into latent classes. We evaluated the application of this method in a sample of ab initio pilot applicants (N = 297), using longitudinal data collected from a military flight-screening program (where the applicants flew seven required flights), resulting in a final pass–fail outcome. Results showed the existence of a two-class solution (Cluster 1 presented an initially higher performance and contained 75% of the Pass candidates) and the psychomotor coordination and general adaptability showed a significant effect.","PeriodicalId":83071,"journal":{"name":"The International journal of aviation psychology","volume":"25 1","pages":"108 - 121"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10508414.2015.1130489","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of aviation psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10508414.2015.1130489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Latent growth mixture modeling is a statistical approach that models longitudinal data, grouping individuals who share similar longitudinal data patterns into latent classes. We evaluated the application of this method in a sample of ab initio pilot applicants (N = 297), using longitudinal data collected from a military flight-screening program (where the applicants flew seven required flights), resulting in a final pass–fail outcome. Results showed the existence of a two-class solution (Cluster 1 presented an initially higher performance and contained 75% of the Pass candidates) and the psychomotor coordination and general adaptability showed a significant effect.
利用潜在轨迹改进空军飞行员候选人的选择:潜在生长混合模型的应用
潜在增长混合建模是一种对纵向数据建模的统计方法,将具有相似纵向数据模式的个体分组为潜在类。我们利用从军事飞行筛选项目(申请人飞行了7个要求的航班)收集的纵向数据,在从头开始的飞行员申请人样本(N = 297)中评估了该方法的应用,得出了最终的及格-不及格结果。结果表明,存在两类解决方案(第一类具有较高的初始性能,包含75%的合格考生),精神运动协调和一般适应性表现出显著的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信