Building Better Machine Learning Models for Rhetorical Analyses: The Use of Rhetorical Feature Sets for Training Artificial Neural Network Models

IF 2 Q2 COMMUNICATION
Z. Majdik, James Wynn
{"title":"Building Better Machine Learning Models for Rhetorical Analyses: The Use of Rhetorical Feature Sets for Training Artificial Neural Network Models","authors":"Z. Majdik, James Wynn","doi":"10.1080/10572252.2022.2077452","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we investigate two approaches to building artificial neural network models to compare their effectiveness for accurately classifying rhetorical structures across multiple (non-binary) classes in small textual datasets. We find that the most accurate type of model can be designed by using a custom rhetorical feature list coupled with general-language word vector representations, which outperforms models with more computing-intensive architectures.","PeriodicalId":45536,"journal":{"name":"Technical Communication Quarterly","volume":"32 1","pages":"63 - 78"},"PeriodicalIF":2.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Communication Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10572252.2022.2077452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In this paper, we investigate two approaches to building artificial neural network models to compare their effectiveness for accurately classifying rhetorical structures across multiple (non-binary) classes in small textual datasets. We find that the most accurate type of model can be designed by using a custom rhetorical feature list coupled with general-language word vector representations, which outperforms models with more computing-intensive architectures.
为修辞学分析建立更好的机器学习模型:使用修辞学特征集训练人工神经网络模型
在本文中,我们研究了两种构建人工神经网络模型的方法,比较了它们在小型文本数据集中跨多个(非二元)类别准确分类修辞结构的有效性。我们发现,最准确的模型类型可以通过使用自定义修辞特征列表与通用语言词向量表示相结合来设计,这优于具有更多计算密集型架构的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
45.50%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信