U-Pb zircon geochronology of northern metamorphic massifs in the Biga Peninsula (NW Anatolia-Turkey): new data and a new approach to understand the tectonostratigraphy of the region

IF 1.5 Q1 Earth and Planetary Sciences
İ. Tunç, E. Yi̇ği̇tbaş, F. Şengün, Jana Wazeck, M. Hofmann, U. Linnemann
{"title":"U-Pb zircon geochronology of northern metamorphic massifs in the Biga Peninsula (NW Anatolia-Turkey): new data and a new approach to understand the tectonostratigraphy of the region","authors":"İ. Tunç, E. Yi̇ği̇tbaş, F. Şengün, Jana Wazeck, M. Hofmann, U. Linnemann","doi":"10.1080/09853111.2013.877242","DOIUrl":null,"url":null,"abstract":"Metamorphic massifs of the Biga Peninsula can be divided into two approximately ENE–WSW-trending belts. It is believed that these two belts represent two different tectonic zones separated by a NE-trending Alpine ophiolitic suture. The Sakarya Zone lies to the S–SE of this Alpine suture, and consists of the Kazdağ metamorphic complex which is tectonically overlain by the Permo-Triassic Karakaya Complex. The metamorphic rocks, as an Alpine edifice located N–NW of the suture, have been assigned to the Rhodope and Serbo-Macedonian massifs of Bulgaria and Greece. The northern metamorphic belt is represented by the Karadağ Massif in the west, which has been evaluated as a different unit from the others, the Karabiga Massif in the east and the Çamlıca Massif between them. All three massifs are mapped in detail in light of previous studies and LA–ICP–MS U-Pb zircon dating was applied to stratigraphically compare them. Contrary to previous studies, our data indicate that the basement metamorphic associations in these three areas show similar characteristics concerning their stratigraphical and lithological aspects and also spatial distribution of their outcrops. U-Pb LA–ICP–MS dating of zircons from the three individual metamorphic massifs yielded the following data: maximum sedimentation ages of the protolith of mica schists in the range of 559 ± 17 to 582 ± 30 Ma; crystallisation age of the protolith of metavolcanic rocks of 577 ± 20 Ma; and crystallisation age of the protolith of eclogites at 565 ± 9 Ma. These ages clearly show that the metamorphic units of the northern massifs are comparable to each other. Also, the U-Pb zircon concordia diagrams from these three metamorphic massifs show remarkably similar patterns. In addition to the similar maximum sedimentation ages for all mica schists with crystallisation ages of the protoliths of the metabasic rocks, there are two major complex tectono-thermal overprints (episodic lead loss events), at c. 330–300 Ma (Variscan?) and c. 100–10 Ma (Alpine and late Alpine?), respectively. Field mapping and analytical data indicate that the basement rocks of the northern massifs in the Biga Peninsula have a correlative Late Ediacaran to Early Cambrian stratigraphic range. In part, Permian strata unconformably overlie basement rocks in the Karadağ Massif. Both tectono-thermal events are demonstrated by coeval episodic lead loss of many zircons in all samples from all areas. Finally, the results of this research do not support an Alpine suture between the two metamorphic belts of the Biga Peninsula. Therefore, the geological evolution of the region might require reevaluation.","PeriodicalId":50420,"journal":{"name":"Geodinamica Acta","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09853111.2013.877242","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodinamica Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09853111.2013.877242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 20

Abstract

Metamorphic massifs of the Biga Peninsula can be divided into two approximately ENE–WSW-trending belts. It is believed that these two belts represent two different tectonic zones separated by a NE-trending Alpine ophiolitic suture. The Sakarya Zone lies to the S–SE of this Alpine suture, and consists of the Kazdağ metamorphic complex which is tectonically overlain by the Permo-Triassic Karakaya Complex. The metamorphic rocks, as an Alpine edifice located N–NW of the suture, have been assigned to the Rhodope and Serbo-Macedonian massifs of Bulgaria and Greece. The northern metamorphic belt is represented by the Karadağ Massif in the west, which has been evaluated as a different unit from the others, the Karabiga Massif in the east and the Çamlıca Massif between them. All three massifs are mapped in detail in light of previous studies and LA–ICP–MS U-Pb zircon dating was applied to stratigraphically compare them. Contrary to previous studies, our data indicate that the basement metamorphic associations in these three areas show similar characteristics concerning their stratigraphical and lithological aspects and also spatial distribution of their outcrops. U-Pb LA–ICP–MS dating of zircons from the three individual metamorphic massifs yielded the following data: maximum sedimentation ages of the protolith of mica schists in the range of 559 ± 17 to 582 ± 30 Ma; crystallisation age of the protolith of metavolcanic rocks of 577 ± 20 Ma; and crystallisation age of the protolith of eclogites at 565 ± 9 Ma. These ages clearly show that the metamorphic units of the northern massifs are comparable to each other. Also, the U-Pb zircon concordia diagrams from these three metamorphic massifs show remarkably similar patterns. In addition to the similar maximum sedimentation ages for all mica schists with crystallisation ages of the protoliths of the metabasic rocks, there are two major complex tectono-thermal overprints (episodic lead loss events), at c. 330–300 Ma (Variscan?) and c. 100–10 Ma (Alpine and late Alpine?), respectively. Field mapping and analytical data indicate that the basement rocks of the northern massifs in the Biga Peninsula have a correlative Late Ediacaran to Early Cambrian stratigraphic range. In part, Permian strata unconformably overlie basement rocks in the Karadağ Massif. Both tectono-thermal events are demonstrated by coeval episodic lead loss of many zircons in all samples from all areas. Finally, the results of this research do not support an Alpine suture between the two metamorphic belts of the Biga Peninsula. Therefore, the geological evolution of the region might require reevaluation.
比加半岛北部变质地块U-Pb锆石年代学研究:新资料和认识该地区构造地层的新途径
碧加半岛的变质岩体大致可分为ene - wsw向两条带。认为这两个带代表了两个不同的构造带,由一条ne向的阿尔卑斯蛇绿岩缝合线隔开。萨卡里亚带位于该高寒缝合带的南南侧,由二叠纪-三叠纪卡拉卡亚杂岩在构造上覆盖的卡兹达尔变质杂岩组成。变质岩作为一种位于缝合线北西北偏北的高山构造,被划分为保加利亚和希腊的罗多彼和塞尔维亚-马其顿地块。北变质带以西部的卡拉达甘地块为代表,被评价为不同于其他变质带的单元,东部的卡拉达甘地块及其之间的Çamlıca地块。在前人研究的基础上,对这三个地块进行了详细的测绘,并应用LA-ICP-MS U-Pb锆石定年对它们进行了地层比较。与以往的研究相反,我们的数据表明,这三个地区的基底变质组合在地层和岩性方面以及露头的空间分布方面具有相似的特征。3个变质地块的锆石U-Pb LA-ICP-MS测年结果表明:云母片岩原岩最大沉积年龄为559±17 ~ 582±30 Ma;变质火山岩原岩结晶年龄为577±20 Ma;榴辉岩原岩结晶年龄(565±9 Ma)。这些年龄清楚地表明,北部地块的变质单元具有可比性。同时,这三个变质地块的U-Pb锆石协和图显示出非常相似的模式。除了所有云母片岩的最大沉积年龄与变质岩原岩的结晶年龄相似外,还存在两个主要的复杂构造-热叠加(幕式铅损失事件),分别在c. 330-300 Ma (Variscan?)和c. 100-10 Ma(阿尔卑斯和晚阿尔卑斯?)。野外填图和分析资料表明,毕嘎半岛北部地块基底岩具有晚埃迪卡拉世至早寒武世相关的地层范围。在一定程度上,二叠纪地层不整合地覆盖在卡拉达木地块的基底岩上。在所有地区的所有样品中,许多锆石的同期幕式铅损失证明了这两个构造-热事件。最后,本研究结果不支持碧加半岛两个变质带之间存在阿尔卑斯缝合线。因此,该地区的地质演化可能需要重新评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geodinamica Acta
Geodinamica Acta 地学-地球科学综合
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊介绍: Geodinamica Acta provides an international and interdisciplinary forum for the publication of results of recent research dealing with both internal and external geodynamics. Its aims to promote discussion between the various disciplines that work on the dynamics of the lithosphere and hydrosphere. There are no constraints over themes, provided the main thrust of the paper relates to Earth''s internal and external geodynamics. The Journal encourages the submission of papers in all fields of earth sciences, such as biostratigraphy, geochemistry, geochronology and thermochronology, geohazards and their societal impacts, geomorphology, geophysics, glaciology, igneous and metamorphic petrology, magmatism, marine geology, metamorphism, mineral-deposits and energy resources, mineralogy, orogeny, palaeoclimatology, palaeoecology, paleoceanograpgy, palaeontology, petroleum geology, sedimentology, seismology and earthquakes, stratigraphy, structural geology, surface processes, tectonics (neoteoctonic, plate tectonics, seismo-tectonics, Active tectonics) and volcanism. Geodinamica Acta publishes high quality, peer-reviewed original and timely scientific papers, comprehensive review articles on hot topics of current interest, rapid communications relating to a significant advance in the earth sciences with broad interest, and discussions of papers that have already appeared in recent issues of the journal. Book reviews are also included. Submitted papers must have international appeal and regional implications; they should present work that would be of interest to many different specialists. Geographic coverage is global and work on any part of the world is considered. The Journal also publishes thematic sets of papers on topical aspects of earth sciences or special issues of selected papers from conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信