{"title":"A novel machine learning program applied to discover otological diagnoses","authors":"J. Laurikkala, E. Kentala, M. Juhola, I. Pyykkö","doi":"10.1080/010503901300007218","DOIUrl":null,"url":null,"abstract":"A novel machine learning system, Galactica, has been developed for knowledge discovery from databases. This system was applied to discover diagnostic rules from a patient database containing 564 cases with vestibular schwannoma, bening paroxysmal positional vertigo, Me´nie`re's disease, sudden deafness, traumatic vertigo and vestibular neuritis diagnoses. The rules were evaluated using an independent testing set. The accuracy of rules for these diagnoses were 91%, 96%, 81%, 95%, 92% and 98%, respectively. Besides being accurate, the rules contained the five most important diagnostic questions identified in the earlier research. The knowledge presented with rules can be easily comprehended and verified.","PeriodicalId":76516,"journal":{"name":"Scandinavian audiology","volume":"30 1","pages":"100 - 102"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/010503901300007218","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian audiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/010503901300007218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
A novel machine learning system, Galactica, has been developed for knowledge discovery from databases. This system was applied to discover diagnostic rules from a patient database containing 564 cases with vestibular schwannoma, bening paroxysmal positional vertigo, Me´nie`re's disease, sudden deafness, traumatic vertigo and vestibular neuritis diagnoses. The rules were evaluated using an independent testing set. The accuracy of rules for these diagnoses were 91%, 96%, 81%, 95%, 92% and 98%, respectively. Besides being accurate, the rules contained the five most important diagnostic questions identified in the earlier research. The knowledge presented with rules can be easily comprehended and verified.