{"title":"Non-commutative methods in additive combinatorics and number theory","authors":"I. Shkredov","doi":"10.1070/RM10029","DOIUrl":null,"url":null,"abstract":"The survey is devoted to applications of growth in non- Abelian groups to a number of problems in number theory and additive combinatorics. We discuss Zaremba’s conjecture, sum-product theory, incidence geometry, the affine sieve, and some other questions. Bibliography: 149 titles.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"28 1","pages":"1065 - 1122"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
The survey is devoted to applications of growth in non- Abelian groups to a number of problems in number theory and additive combinatorics. We discuss Zaremba’s conjecture, sum-product theory, incidence geometry, the affine sieve, and some other questions. Bibliography: 149 titles.
期刊介绍:
Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.