{"title":"Twisted tensor products of DG algebras","authors":"Dmitri Orlov","doi":"10.1070/RM10027","DOIUrl":null,"url":null,"abstract":"Let A = (A, d) be a differential graded algebra (DGA) over a field k, that is, a Z-graded algebra A = ⊕ q∈Z A q with a k-linear map d : A → A, d = 0, of degree one that satisfies the graded Leibniz rule. Denote by D(A ) the derived category of right A -modules and by perf -A ⊂ D(A ) the triangulated subcategory of perfect modules generated by A , which is equivalent to the subcategory of compact objects D(A ) ⊂ D(A ) [5]. Suppose that A is finite dimensional. We denote by J ⊂ A the (Jacobson) radical of the k-algebra A. The ideal J is graded. Let S be the graded quotient algebra A/J , and let ε : S → A be the canonical homomorphism of algebras. We assume that d ◦ ε = 0 and d(J) ⊆ J , and consider S as a DGA with the trivial differential. In this case there are morphisms ε : S → A and π : A → S of DGAs, and the DGA A will be said to be S-split. Let e ∈ A be an idempotent, and let Pe = eA and Qe = Ae be the right and left projective A-modules. Since d(e) = 0, the A-modules Pe and Qe have the natural structure of DG A -modules. We denote by Pe = (Pe, d) and Qe = (Qe, d) the corresponding right and left DG A -modules. A right (left) DG module Φ will be called semiprojective if there is a filtration 0 = Φ0 ⊂ Φ1 ⊂ · · · = Φ such that every quotient Φi+1/Φi is a direct sum of projective DG-modules Pe (respectively, Qe). The simple right A-modules Se = Pe/eJ with d = 0 become right DG A -modules Se. We consider S as a right DG A -module and denote it by S. For any S-split DGA A , every finite-dimensional DG A -module M has a filtration 0 = Ψ0 ⊂ Ψ1 ⊂ · · · ⊂ Ψk = M such that every quotient Ψi+1/Ψi is isomorphic to some Se. Recall that a DGA A is called smooth if it is perfect as a DG bimodule.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"1146 - 1148"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Let A = (A, d) be a differential graded algebra (DGA) over a field k, that is, a Z-graded algebra A = ⊕ q∈Z A q with a k-linear map d : A → A, d = 0, of degree one that satisfies the graded Leibniz rule. Denote by D(A ) the derived category of right A -modules and by perf -A ⊂ D(A ) the triangulated subcategory of perfect modules generated by A , which is equivalent to the subcategory of compact objects D(A ) ⊂ D(A ) [5]. Suppose that A is finite dimensional. We denote by J ⊂ A the (Jacobson) radical of the k-algebra A. The ideal J is graded. Let S be the graded quotient algebra A/J , and let ε : S → A be the canonical homomorphism of algebras. We assume that d ◦ ε = 0 and d(J) ⊆ J , and consider S as a DGA with the trivial differential. In this case there are morphisms ε : S → A and π : A → S of DGAs, and the DGA A will be said to be S-split. Let e ∈ A be an idempotent, and let Pe = eA and Qe = Ae be the right and left projective A-modules. Since d(e) = 0, the A-modules Pe and Qe have the natural structure of DG A -modules. We denote by Pe = (Pe, d) and Qe = (Qe, d) the corresponding right and left DG A -modules. A right (left) DG module Φ will be called semiprojective if there is a filtration 0 = Φ0 ⊂ Φ1 ⊂ · · · = Φ such that every quotient Φi+1/Φi is a direct sum of projective DG-modules Pe (respectively, Qe). The simple right A-modules Se = Pe/eJ with d = 0 become right DG A -modules Se. We consider S as a right DG A -module and denote it by S. For any S-split DGA A , every finite-dimensional DG A -module M has a filtration 0 = Ψ0 ⊂ Ψ1 ⊂ · · · ⊂ Ψk = M such that every quotient Ψi+1/Ψi is isomorphic to some Se. Recall that a DGA A is called smooth if it is perfect as a DG bimodule.
期刊介绍:
Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.