Multilevel interpolation for Nikishin systems and boundedness of Jacobi matrices on binary trees

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Aptekarev, V. Lysov
{"title":"Multilevel interpolation for Nikishin systems and boundedness of Jacobi matrices on binary trees","authors":"A. Aptekarev, V. Lysov","doi":"10.1070/RM10017","DOIUrl":null,"url":null,"abstract":"Modern applications [1] provide motivation to consider the tridiagonal Jacobi matrix (or the so-called discrete Schrödinger operator), a classical object of spectral theory, on graphs [2]. On homogeneous trees one method to implement such operators is based on Hermite–Padé interpolation problems (see [3]). Let μ⃗ = (μ1, . . . , μd) be a collection of positive Borel measures with compact supports on R. We denote by μ̂j(z) := ∫ (z−x)−1 dμj(x) their Cauchy transforms. For an arbitrary multi-index n⃗ ∈ Z+, we need to find polynomials qn⃗,0, qn⃗,1, . . . , qn⃗,d and pn⃗, pn⃗,1, . . . , pn⃗,d with deg pn⃗ = |n⃗| := n1 + · · · + nd such that the following interpolation conditions are satisfied as z →∞ for j = 1, . . . , d:","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Modern applications [1] provide motivation to consider the tridiagonal Jacobi matrix (or the so-called discrete Schrödinger operator), a classical object of spectral theory, on graphs [2]. On homogeneous trees one method to implement such operators is based on Hermite–Padé interpolation problems (see [3]). Let μ⃗ = (μ1, . . . , μd) be a collection of positive Borel measures with compact supports on R. We denote by μ̂j(z) := ∫ (z−x)−1 dμj(x) their Cauchy transforms. For an arbitrary multi-index n⃗ ∈ Z+, we need to find polynomials qn⃗,0, qn⃗,1, . . . , qn⃗,d and pn⃗, pn⃗,1, . . . , pn⃗,d with deg pn⃗ = |n⃗| := n1 + · · · + nd such that the following interpolation conditions are satisfied as z →∞ for j = 1, . . . , d:
Nikishin系统的多级插值及二叉树上Jacobi矩阵的有界性
现代应用[1]提供了在图[2]上考虑三对角Jacobi矩阵(或所谓的离散Schrödinger算子)的动机,这是谱理论的一个经典对象。在齐次树上实现这种算子的一种方法是基于hermite - pad插值问题(见[3])。令μ∈(μ1,…), μd)是r上具有紧支撑的正Borel测度的集合,用μ μj(z) =∫(z−x)−1 dμj(x)表示它们的柯西变换。对于任意多指标n∈Z+,我们需要找到多项式qn l2,0, qn l2,1,…。, qn,d和pn, pn,1,…, pn∈,d与deg pn∈= |n∈|:= n1 +···+,且对于j = 1,…,满足下列插值条件:z→∞d:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信