{"title":"On the Dirichlet problem for not strongly elliptic second-order equations","authors":"A. Bagapsh, M. Mazalov, K. Fedorovskiy","doi":"10.1070/RM10011","DOIUrl":null,"url":null,"abstract":"1. Let L be a second-order elliptic partial differential operator in C with constant complex coefficients, that is, Lf = af ′′ xx + bf ′′ xy + cf ′′ yy, where a, b, c ∈ C. The ellipticity of L means that the roots λ1 and λ2 of the corresponding characteristic equation aλ + bλ + c = 0 are not real. If L is such that λ1 and λ2 belong to different half-planes of the complex plane with respect to the real line, then L is called strongly elliptic. The classical example of a strongly elliptic operator is the Laplace operator ∆, where ∆f = f ′′ xx + f ′′ yy, while the Bitsadze operator ∂, where ∂f = (f ′ x + if ′ y)/2 is the Cauchy–Riemann operator, serves as an example of a not strongly elliptic one. We denote by C(E) the space of all continuous complex-valued functions on a set E ⊂ C, and put ∥f∥E = supz∈E |f(z)| for f ∈ C(E). A bounded simply connected domain G ⊂ C is said to be regular with respect to the Dirichlet problem for L (or, briefly, L-regular) if for every function h ∈ C(∂G), there is an f ∈ C(G) such that Lf = 0 in G and f ∣∣ ∂G = h. The classical theorem due to Lebesgue [1] states that any bounded simply connected domain G ⊂ C is ∆-regular, that is, it is regular with respect to the classical Dirichlet problem for harmonic functions. For a general strongly elliptic operator L of the form under consideration, there is a conjecture that any bounded simply connected domain is L-regular (see [2], Problem 4.2). This conjecture has been proved only under certain additional fairly restrictive conditions on the regularity of the boundary of G. Namely, the corresponding result was obtained in [3] for Jordan domains with piecewise C-smooth boundary, and this condition on ∂G has not been significantly weakened during the last 20 years. (For instance, the question concerning the L-regularity of an arbitrary Jordan domain G is still open even in the case when ∂G is rectifiable.)","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"77 1","pages":"372 - 374"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
1. Let L be a second-order elliptic partial differential operator in C with constant complex coefficients, that is, Lf = af ′′ xx + bf ′′ xy + cf ′′ yy, where a, b, c ∈ C. The ellipticity of L means that the roots λ1 and λ2 of the corresponding characteristic equation aλ + bλ + c = 0 are not real. If L is such that λ1 and λ2 belong to different half-planes of the complex plane with respect to the real line, then L is called strongly elliptic. The classical example of a strongly elliptic operator is the Laplace operator ∆, where ∆f = f ′′ xx + f ′′ yy, while the Bitsadze operator ∂, where ∂f = (f ′ x + if ′ y)/2 is the Cauchy–Riemann operator, serves as an example of a not strongly elliptic one. We denote by C(E) the space of all continuous complex-valued functions on a set E ⊂ C, and put ∥f∥E = supz∈E |f(z)| for f ∈ C(E). A bounded simply connected domain G ⊂ C is said to be regular with respect to the Dirichlet problem for L (or, briefly, L-regular) if for every function h ∈ C(∂G), there is an f ∈ C(G) such that Lf = 0 in G and f ∣∣ ∂G = h. The classical theorem due to Lebesgue [1] states that any bounded simply connected domain G ⊂ C is ∆-regular, that is, it is regular with respect to the classical Dirichlet problem for harmonic functions. For a general strongly elliptic operator L of the form under consideration, there is a conjecture that any bounded simply connected domain is L-regular (see [2], Problem 4.2). This conjecture has been proved only under certain additional fairly restrictive conditions on the regularity of the boundary of G. Namely, the corresponding result was obtained in [3] for Jordan domains with piecewise C-smooth boundary, and this condition on ∂G has not been significantly weakened during the last 20 years. (For instance, the question concerning the L-regularity of an arbitrary Jordan domain G is still open even in the case when ∂G is rectifiable.)
期刊介绍:
Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.