Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves

IF 1.4 4区 数学 Q1 MATHEMATICS
V. Buchstaber, A. Mikhailov
{"title":"Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves","authors":"V. Buchstaber, A. Mikhailov","doi":"10.1070/RM10007","DOIUrl":null,"url":null,"abstract":"This survey is devoted to integrable polynomial Hamiltonian systems associated with symmetric powers of plane algebraic curves. We focus our attention on the relations (discovered by the authors) between the Stäckel systems, Novikov’s equations for the th stationary Korteweg– de Vries hierarchy, the Dubrovin–Novikov coordinates on the universal bundle of Jacobians of hyperelliptic curves, and new systems obtained by considering the symmetric powers of curves when the power is not equal to the genus of the curve. Bibliography: 52 titles.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"587 - 652"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

This survey is devoted to integrable polynomial Hamiltonian systems associated with symmetric powers of plane algebraic curves. We focus our attention on the relations (discovered by the authors) between the Stäckel systems, Novikov’s equations for the th stationary Korteweg– de Vries hierarchy, the Dubrovin–Novikov coordinates on the universal bundle of Jacobians of hyperelliptic curves, and new systems obtained by considering the symmetric powers of curves when the power is not equal to the genus of the curve. Bibliography: 52 titles.
可积多项式哈密顿系统与平面代数曲线的对称幂
本文研究与平面代数曲线对称幂相关的可积多项式哈密顿系统。我们的重点是(作者发现的)Stäckel系统、平稳Korteweg - de Vries层次的Novikov方程、超椭圆曲线jacobian泛束上的Dubrovin-Novikov坐标,以及考虑曲线的对称幂不等于曲线的格时得到的新系统之间的关系。参考书目:52篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信