Interpolation properties of Hermite–Padé polynomials

IF 1.4 4区 数学 Q1 MATHEMATICS
S. Suetin
{"title":"Interpolation properties of Hermite–Padé polynomials","authors":"S. Suetin","doi":"10.1070/RM10000","DOIUrl":null,"url":null,"abstract":"where σ1 is a positive measure with support supp σ1 on a compact set E ⊂ R and h ∈ H (E) is a holomorphic function on E. If h(z) = σ̂2(z), where σ2 is a positive measure with support supp σ2 ⊂ F , where F ⊂ R \\ E is a compact set, then the pair of functions f1, f2 forms a Nikishin system (see [6], and also [7], [5], [10], and the bibliography therein). Let Qn,j , j = 0, 1, 2, be the Hermite–Padé polynomials of the first type for the collection [1, f1, f2] with multi-index n = (n − 1, n, n), which means that deg Qn,j ⩽ n and (Qn,0 + Qn,1f1 + Qn,2f2)(z) = O(z−2n−2), z →∞. (2) For an arbitrary polynomial Q ∈ C[z] \\ 0, let","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"543 - 545"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10000","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

where σ1 is a positive measure with support supp σ1 on a compact set E ⊂ R and h ∈ H (E) is a holomorphic function on E. If h(z) = σ̂2(z), where σ2 is a positive measure with support supp σ2 ⊂ F , where F ⊂ R \ E is a compact set, then the pair of functions f1, f2 forms a Nikishin system (see [6], and also [7], [5], [10], and the bibliography therein). Let Qn,j , j = 0, 1, 2, be the Hermite–Padé polynomials of the first type for the collection [1, f1, f2] with multi-index n = (n − 1, n, n), which means that deg Qn,j ⩽ n and (Qn,0 + Qn,1f1 + Qn,2f2)(z) = O(z−2n−2), z →∞. (2) For an arbitrary polynomial Q ∈ C[z] \ 0, let
hermite - pad多项式的插值性质
其中σ1是紧集合E∧R上支持σ1的正测度,h∈h(E)是E上的全纯函数。若h(z) = σ σ2 (z),其中σ2是支持σ2∧F的正测度,其中F∧R \ E是紧集合,则函数f1、f2对形成尼基辛系统(见[6],也见[7]、[5]、[10]及其参考文献)。设Qn,j,j = 0,1,2,是多指标n = (n−1,n, n)集合[1,f1, f2]的第一类hermite - pad多项式,即deg Qn,j≤n和(Qn,0 + Qn,1f1 + Qn,2f2)(z) = O(z−2n−2),z→∞。(2)对于任意多项式Q∈C[z] \ 0,令
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信