A. Aptekarev, S. Dobrokhotov, D. N. Tulyakov, A. Tsvetkova
{"title":"Plancherel–Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and recurrence relations","authors":"A. Aptekarev, S. Dobrokhotov, D. N. Tulyakov, A. Tsvetkova","doi":"10.1070/IM9138","DOIUrl":null,"url":null,"abstract":"We study the asymptotic properties of multiple orthogonal Hermite polynomials which are determined by the orthogonality relations with respect to two Hermite weights (Gaussian distributions) with shifted maxima. The starting point of our asymptotic analysis is a four-term recurrence relation connecting the polynomials with adjacent numbers. We obtain asymptotic expansions as the number of the polynomial and its variable grow consistently (the so-called Plancherel–Rotach type asymptotic formulae). Two techniques are used. The first is based on constructing expansions of bases of homogeneous difference equations, and the second on reducing difference equations to pseudodifferential ones and using the theory of the Maslov canonical operator. The results of these approaches agree.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM9138","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the asymptotic properties of multiple orthogonal Hermite polynomials which are determined by the orthogonality relations with respect to two Hermite weights (Gaussian distributions) with shifted maxima. The starting point of our asymptotic analysis is a four-term recurrence relation connecting the polynomials with adjacent numbers. We obtain asymptotic expansions as the number of the polynomial and its variable grow consistently (the so-called Plancherel–Rotach type asymptotic formulae). Two techniques are used. The first is based on constructing expansions of bases of homogeneous difference equations, and the second on reducing difference equations to pseudodifferential ones and using the theory of the Maslov canonical operator. The results of these approaches agree.
期刊介绍:
The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to:
Algebra;
Mathematical logic;
Number theory;
Mathematical analysis;
Geometry;
Topology;
Differential equations.