Plancherel–Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and recurrence relations

IF 0.8 3区 数学 Q2 MATHEMATICS
A. Aptekarev, S. Dobrokhotov, D. N. Tulyakov, A. Tsvetkova
{"title":"Plancherel–Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and recurrence relations","authors":"A. Aptekarev, S. Dobrokhotov, D. N. Tulyakov, A. Tsvetkova","doi":"10.1070/IM9138","DOIUrl":null,"url":null,"abstract":"We study the asymptotic properties of multiple orthogonal Hermite polynomials which are determined by the orthogonality relations with respect to two Hermite weights (Gaussian distributions) with shifted maxima. The starting point of our asymptotic analysis is a four-term recurrence relation connecting the polynomials with adjacent numbers. We obtain asymptotic expansions as the number of the polynomial and its variable grow consistently (the so-called Plancherel–Rotach type asymptotic formulae). Two techniques are used. The first is based on constructing expansions of bases of homogeneous difference equations, and the second on reducing difference equations to pseudodifferential ones and using the theory of the Maslov canonical operator. The results of these approaches agree.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM9138","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic properties of multiple orthogonal Hermite polynomials which are determined by the orthogonality relations with respect to two Hermite weights (Gaussian distributions) with shifted maxima. The starting point of our asymptotic analysis is a four-term recurrence relation connecting the polynomials with adjacent numbers. We obtain asymptotic expansions as the number of the polynomial and its variable grow consistently (the so-called Plancherel–Rotach type asymptotic formulae). Two techniques are used. The first is based on constructing expansions of bases of homogeneous difference equations, and the second on reducing difference equations to pseudodifferential ones and using the theory of the Maslov canonical operator. The results of these approaches agree.
多重正交埃尔米特多项式的Plancherel-Rotach型渐近公式及递推关系
研究了多个正交Hermite多项式的渐近性质,这些多项式是由两个带移最大值的Hermite权值(高斯分布)的正交关系决定的。我们的渐近分析的起点是一个四项递归关系,将多项式与相邻数连接起来。当多项式及其变量的数目一致增长时,我们得到渐近展开式(所谓的Plancherel-Rotach型渐近公式)。使用了两种技术。第一个是基于构造齐次差分方程的基展开,第二个是基于利用马斯洛夫正则算子理论将差分方程化为伪微分方程。这些方法的结果是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信